Relating glass forming ability and mechanical behavior to the structure of metallic liquids and glasses
将玻璃形成能力和机械行为与金属液体和玻璃的结构联系起来
基本信息
- 批准号:2004630
- 负责人:
- 金额:$ 37.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical SummaryMetallic glasses are a unique class of metals with structures very different from the more common crystalline materials. Whereas atoms in most metals are arranged in a regular, ordered pattern, metallic glasses have a disordered atomic structure, similar to the liquid state. This difference at the atomic-level often results in dramatically different properties at the large scale, including higher strength, better corrosion resistance, and a surprising ability to be easily and inexpensively molded into complex shapes. Not all metals are able to form glasses, however. Recent studies suggest that the ability to form a glass may be related to the atomic structure of the high-temperature liquid. Quantitatively describing the disordered structure in order to predict the glass-forming ability of a metal alloy is challenging, since there is no long-range pattern to the atomic positions. Previous attempts to identify common polyhedral shapes in the atomic structure are instructive, but offer limited insight into the degree of similarity among those shapes and therefore the overall degree of structural order, particularly for alloys consisting of multiple elements of different atomic sizes. This project instead uses artificial-intelligence-based algorithms to automatically identify structurally ‘similar’ atomic clusters in computer-simulated liquids. Liquid compositions with a low degree of such structural similarity are postulated to be good glass formers. The results of the simulations will be experimentally verified over a wide range of compositions using compact material libraries, rapidly synthesized with an advanced 3D-printing-based method. This work will accelerate the discovery of new, high-performance metallic materials for a variety of applications, as well as contribute to the development of a science and engineering workforce trained in computational and efficient manufacturing methods. Finally, it will impact K-12 science and engineering education through workshops targeting middle- and high-school teachers from diverse school districts.Technical SummaryMetallic glasses hold tremendous promise as potential structural materials, due to their unique combination of excellent mechanical properties and unusual ability to be thermoplastically formed into complex shapes. While potentially transformative, several fundamental questions remain about the relationship between glass structure and properties. In particular, the relationship between the structure of the liquid and the ease with which it can be quenched to form a glass remains poorly understood. This project is motivated by recent studies suggesting that the relative glass-forming ability of compositions within an alloy system may be predicted by a simple parameter characterizing the population distribution of nearest-neighbor atomic clusters in the liquid, well above the glass transition temperature. The work integrates molecular dynamics simulations, pattern-recognition and machine-learning clustering algorithms, and state-of-the-art high-throughput synthesis and characterization methods to investigate correlations between the geometry and population of atomic clusters in simulated liquids and glasses and experimentally observed properties, over a wide range of alloy compositions and families. A laser-deposition-based synthesis technique is used to rapidly construct alloy libraries for evaluation. Mechanical properties of the glass-forming regions in these libraries are mapped as a function of composition via nanoindentation. Compositional trends in glass-forming ability and mechanical properties will be compared with trends in the population distribution of atomic clusters in simulated liquids and glasses. For each alloy family, point-pattern matching and machine-learning clustering algorithms will be used to identify a set of unique and robust atomic motifs that comprise the structure of the simulated liquids and glasses. By integrating the simulated structures with experimental property measurements, this work will dramatically strengthen the understanding of structure-property relationships in metallic glasses, and enable the rational design of new alloys with desirable combinations of properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属玻璃是一类独特的金属,其结构与常见的晶体材料大不相同。大多数金属中的原子排列都是规则有序的,而金属玻璃的原子结构则是无序的,类似于液态。这种原子水平上的差异通常会导致在大尺度上的显著不同的性能,包括更高的强度,更好的耐腐蚀性,以及容易和廉价地塑造成复杂形状的惊人能力。然而,并不是所有的金属都能形成玻璃。最近的研究表明,形成玻璃的能力可能与高温液体的原子结构有关。定量描述无序结构以预测金属合金的玻璃形成能力是具有挑战性的,因为原子位置没有长程模式。先前对原子结构中常见多面体形状的识别尝试是有指导意义的,但对这些形状之间的相似程度以及因此对结构有序的总体程度的了解有限,特别是对于由不同原子尺寸的多个元素组成的合金。这个项目使用基于人工智能的算法来自动识别计算机模拟液体中结构“相似”的原子簇。具有这种结构相似度较低的液体组合物被认为是良好的玻璃形成物。模拟结果将在使用紧凑材料库的广泛组合物上进行实验验证,并使用先进的基于3d打印的方法快速合成。这项工作将加速发现用于各种应用的新型高性能金属材料,并有助于培养在计算和高效制造方法方面受过培训的科学和工程劳动力。最后,它将通过针对不同学区的初中和高中教师的研讨会,影响K-12科学和工程教育。金属玻璃由于其独特的优异的机械性能和不同寻常的热塑性形成复杂形状的能力,作为潜在的结构材料具有巨大的前景。虽然有潜在的变革,但关于玻璃结构和性能之间的关系仍然存在几个基本问题。特别是,液体的结构和它可以淬火形成玻璃的容易程度之间的关系仍然知之甚少。最近的研究表明,合金体系中成分的相对玻璃化形成能力可以通过表征液体中最近邻原子团簇的居群分布的简单参数来预测,远高于玻璃化转变温度。这项工作集成了分子动力学模拟、模式识别和机器学习聚类算法,以及最先进的高通量合成和表征方法,以研究模拟液体和玻璃中原子簇的几何形状和居群之间的相关性,以及实验观察到的性质,涵盖了广泛的合金成分和家族。采用基于激光沉积的合成技术快速构建合金库进行评价。通过纳米压痕将这些库中玻璃形成区域的机械性能映射为成分的函数。在玻璃形成能力和力学性能方面的成分趋势将与模拟液体和玻璃中原子团簇的人口分布趋势进行比较。对于每个合金家族,将使用点模式匹配和机器学习聚类算法来识别一组独特且强大的原子基元,这些原子基元构成了模拟液体和玻璃的结构。通过将模拟结构与实验性能测量相结合,这项工作将极大地加强对金属玻璃结构-性能关系的理解,并使具有理想性能组合的新合金的合理设计成为可能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using characteristic structural motifs in metallic liquids to predict glass forming ability
利用金属液体中的特征结构图案来预测玻璃形成能力
- DOI:10.1016/j.intermet.2022.107560
- 发表时间:2022
- 期刊:
- 影响因子:4.4
- 作者:Weeks, W. Porter;Flores, Katharine M.
- 通讯作者:Flores, Katharine M.
Improving the precision of Vickers indentation measurements in soda-lime glass with increased dwell time
通过增加停留时间提高钠钙玻璃中维氏压痕测量的精度
- DOI:10.1016/j.jnoncrysol.2023.122174
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:Weeks, W. Porter;Flores, Katharine M.
- 通讯作者:Flores, Katharine M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katharine Flores其他文献
A Tutorial Design Process Applied to an Introductory Materials Engineering Course
应用于材料工程入门课程的教程设计过程
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Rebecca Rosenblatt;A. Heckler;Katharine Flores - 通讯作者:
Katharine Flores
Katharine Flores的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katharine Flores', 18)}}的其他基金
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323720 - 财政年份:2023
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a multi-modal x-ray diffraction and scattering instrument
设备: MRI:轨道 1 获取多模态 X 射线衍射和散射仪器
- 批准号:
2320163 - 财政年份:2023
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
A High-Throughput Computational and Experimental Approach to the Design of Multi-Principal Element Alloys
多主元合金设计的高通量计算和实验方法
- 批准号:
1809571 - 财政年份:2018
- 资助金额:
$ 37.94万 - 项目类别:
Continuing Grant
Collaborative Research: Micro- and Nano-Scale Characterization and Modeling of Bone Tissue
合作研究:骨组织的微米和纳米尺度表征和建模
- 批准号:
0826077 - 财政年份:2008
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
CAREER: Development of a Structurally Based Plastic Flow Model to Enhance the Utilization of Bulk Metallic Glasses
职业:开发基于结构的塑性流动模型以提高块状金属玻璃的利用率
- 批准号:
0449651 - 财政年份:2005
- 资助金额:
$ 37.94万 - 项目类别:
Continuing Grant
相似国自然基金
过碱性流纹岩的成因及其Fe同位素研究——以澳大利亚Glass House地区和东昆仑造山带东段为例
- 批准号:41803028
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Er:Glass NPRO激光强度噪声的全量子理论分析与实验研究
- 批准号:61308041
- 批准年份:2013
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
应变玻璃合金相变机理及其特性的原子模拟与实验验证
- 批准号:50771079
- 批准年份:2007
- 资助金额:36.0 万元
- 项目类别:面上项目
低熔点高韧性可延性切削牙科云母微晶玻璃陶瓷的应用基础研究
- 批准号:50672127
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
新型全固化Yb:glass自锁模激光器的研究
- 批准号:69978016
- 批准年份:1999
- 资助金额:14.5 万元
- 项目类别:面上项目
相似海外基金
Slow Arrhenius process in glass forming materials
玻璃成型材料中的慢阿累尼乌斯过程
- 批准号:
23H01145 - 财政年份:2023
- 资助金额:
$ 37.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigating the Function of Fimbriae-forming Lipoprotein in Porphyromonas gingivalis
牙龈卟啉单胞菌菌毛形成脂蛋白的功能研究
- 批准号:
10749647 - 财政年份:2023
- 资助金额:
$ 37.94万 - 项目类别:
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
- 批准号:
2208260 - 财政年份:2022
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
- 批准号:
2208238 - 财政年份:2022
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
RUI: Complex Dynamics in Glass-forming Oxide Melts
RUI:玻璃形成氧化物熔体的复杂动力学
- 批准号:
2051396 - 财政年份:2021
- 资助金额:
$ 37.94万 - 项目类别:
Continuing Grant
Correlating atomic structure with metallic glass forming ability
将原子结构与金属玻璃形成能力相关联
- 批准号:
2104316 - 财政年份:2021
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
High-order many body correlation analysis of network forming glass based on comprehensive integration of experimental, theoretical and data sciences
基于实验、理论和数据科学综合集成的网络成型玻璃高阶多体关联分析
- 批准号:
20H04241 - 财政年份:2020
- 资助金额:
$ 37.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Study of the Connections between Ordering, Dynamics and Glass Forming Ability in Metallic Liquids
合作研究:金属液体中有序、动力学和玻璃形成能力之间的联系研究
- 批准号:
1904466 - 财政年份:2019
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
GOALI: Structural and Topological Controls on Viscoelasticity and Relaxation Processes in Chalcogenide Glass-Forming Liquids
目标:硫族化物玻璃形成液体中粘弹性和弛豫过程的结构和拓扑控制
- 批准号:
1855176 - 财政年份:2019
- 资助金额:
$ 37.94万 - 项目类别:
Continuing Grant