Understanding transport of nanoparticles in crowded, confined media through experiments and simulations

通过实验和模拟了解纳米颗粒在拥挤、受限介质中的传输

基本信息

  • 批准号:
    2004652
  • 负责人:
  • 金额:
    $ 36.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Synthetic nanoparticles can be used as carriers to help deliver drugs to specific locations within the body. Other nanoparticles appear as byproducts from industrial manufacturing that are released into water sources that move through environmental soils. Controlling the transport and distribution of nanoparticles inside the body and in the environment is critical to developing effective therapeutic treatments and strategies for mitigating impacts of pollutants. This project will support research into the transport of nanoparticles in complex environments, such as those encountered these biological and environmental settings, where nanoparticle motions are influenced by the presence of nearby confining surfaces and large macromolecules such as polymers. The research will focus on the flow-driven transport of nanoparticles through solutions of polymers confined in porous media. Experiments will be used to image particles as they move through the confined polymeric fluids. Complementary computer simulations will help characterize mechanisms of nanoparticle transport and interactions between nanoparticles and nearby surfaces that are mediated by polymers in the surrounding fluid. Results of the research will lead to improved predictions of confined nanoparticle transport in complex fluids, which will benefit applications ranging from drug delivery to wastewater treatment. The research team will participate in activities that engage K-12 students and the general public in science and engineering, including hands-on activities at the Children’s Museum of Houston, the Houston Energy Festival, and the GRADE summer camp for women and students from underrepresented groups. The researchers will disseminate results of the project to local industrial scientists and engineers at the Texas Soft Matter Meeting. Scientific results will be available through publicly accessible open-source software projects and through online videos. This project will employ particle-imaging experiments and computational models to investigate the flow-driven transport of nanoparticles through complex fluids confined in porous media. This overarching objective will be achieved by integrating particle synthesis and imaging and microfabrication techniques with advanced simulation methods to (1) elucidate the mechanisms by which polymers influence the transport of nanoparticles through well-controlled porous media and (2) understand how these mechanisms are affected by particle shape and size. Particle imaging and tracking techniques will be used to characterize the transport of nanoparticles through porous media, including quasi-two-dimensional arrays of nanoposts and three-dimensional packed beds. Complementary dissipative particle dynamics simulations will be used to characterize the structure and dynamics of polymers confined in the porous media and the polymer-mediated depletion interactions between the nanoparticles and nearby surfaces. Diffusion and dispersion coefficients of nanoparticles through the model porous media will be measured in experiments and simulations as a function of polymer concentration and molecular weight and particle size and shape. By judiciously combining simulation and experiment, this project will elucidate the physical processes controlling the equilibrium and non-equilibrium (flow-driven) transport of nanoparticles through confined complex fluids. Results will lead to modifications of existing theories to account for polymer-mediated processes that affect nanoparticle transport and dispersion in strong confinement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
合成纳米颗粒可以用作载体,帮助将药物输送到体内的特定位置。 其他纳米颗粒似乎是工业生产的副产品,被释放到通过环境土壤移动的水源中。控制纳米颗粒在体内和环境中的运输和分布对于开发有效的治疗方法和减轻污染物影响的策略至关重要。该项目将支持研究纳米粒子在复杂环境中的运输,例如遇到这些生物和环境设置,其中纳米粒子运动受到附近限制表面和大分子(如聚合物)的影响。该研究将集中在流动驱动的纳米颗粒通过限制在多孔介质中的聚合物溶液的运输。实验将被用来图像颗粒,因为他们通过有限的聚合物流体移动。 互补的计算机模拟将有助于表征纳米颗粒传输机制以及纳米颗粒与周围流体中聚合物介导的附近表面之间的相互作用。研究结果将导致复杂流体中受限纳米颗粒运输的预测得到改进,这将有利于从药物输送到废水处理的应用。该研究小组将参加K-12学生和公众参与科学和工程的活动,包括在休斯顿儿童博物馆,休斯顿能源节和GRADE夏令营的妇女和学生的动手活动。研究人员将在德克萨斯州软物质会议上向当地的工业科学家和工程师传播该项目的结果。科学成果将通过可公开获取的开源软件项目和在线视频提供。该项目将采用粒子成像实验和计算模型来研究纳米粒子通过受限于多孔介质中的复杂流体的流动驱动传输。这一总体目标将通过将颗粒合成、成像和微加工技术与先进的模拟方法相结合来实现,以(1)阐明聚合物影响纳米颗粒通过受控多孔介质传输的机制,以及(2)了解这些机制如何受到颗粒形状和大小的影响。粒子成像和跟踪技术将用于表征纳米粒子通过多孔介质的传输,包括准二维纳米柱阵列和三维填充床。补充耗散粒子动力学模拟将被用来表征的结构和动力学的聚合物限制在多孔介质和聚合物介导的纳米粒子和附近的表面之间的耗尽相互作用。 纳米颗粒通过模型多孔介质的扩散和分散系数将在实验和模拟中测量为聚合物浓度和分子量以及颗粒尺寸和形状的函数。通过明智地结合模拟和实验,该项目将阐明控制纳米颗粒通过受限复杂流体的平衡和非平衡(流动驱动)传输的物理过程。结果将导致现有理论的修改,以解释影响纳米粒子在强约束中的传输和分散的聚合物介导过程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of Filamentous Viruses in Polyelectrolyte Solutions
  • DOI:
    10.1021/acs.macromol.2c01641
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Farshad Safi Samghabadi;Ali H. Slim;Maxwell Smith;Maede Chabi;J. Conrad
  • 通讯作者:
    Farshad Safi Samghabadi;Ali H. Slim;Maxwell Smith;Maede Chabi;J. Conrad
Nanoparticle dispersion in porous media: Effects of array geometry and flow orientation
  • DOI:
    10.1103/physreve.104.015102
  • 发表时间:
    2021-07-06
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mangal,Deepak;Palmer,Jeremy C.;Conrad,Jacinta C.
  • 通讯作者:
    Conrad,Jacinta C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Palmer其他文献

Metabolic Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Not Due to Anti-mitochondrial Antibodies
肌痛性脑脊髓炎/慢性疲劳综合征的代谢功能障碍并非由抗线粒体抗体引起
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    I. Nilsson;Jeremy Palmer;E. Apostolou;C. Gottfries;M. Rizwan;C. Dahle;A. Rosén
  • 通讯作者:
    A. Rosén
A randomized crossover design study comparing the pharmacokinetics and pharmacodynamics of 2 single doses of oral aspirin (75 mg v 150 mg) in pregnant women at risk of preeclampsia: implications on assessing aspirin response and patient adherence to therapy
一项随机交叉设计研究,比较了子痫前期风险孕妇单次口服2种剂量阿司匹林(75毫克对比150毫克)的药代动力学和药效学:对评估阿司匹林反应及患者治疗依从性的意义
  • DOI:
    10.1016/j.ajog.2024.10.023
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Raya Vinogradov;Oisín N. Kavanagh;Jeremy Palmer;Paul Murphy;Emma Curtis;Farhad Kamali;Stephen Robson
  • 通讯作者:
    Stephen Robson
FRI-331 - Identification of potential targets amenable to novel therapeutics to treat symptoms in primary biliary cholangitis
  • DOI:
    10.1016/s0168-8278(23)01079-6
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aaron Wetten;Ben Barron-Millar;Laura Ogle;George Mells;Steven Flack;Vinod Hegade;Richard Sandford;John Kirby;Jeremy Palmer;Sophie Brotherston;Laura Jopson;John Brain;Graham Smith;Steve Rushton;Rebecca L. Jones;Simon Rushbrook;Douglas Thorburn;Stephen Ryder;Gideon Hirschfield;David Jones
  • 通讯作者:
    David Jones
Effects of vitamin D supplementation on salivary immune responses during Marine Corps basic training
海军陆战队基础训练期间补充维生素D对唾液免疫反应的影响
WED-475 - Secretomics identifies IGFBP1 as a stress signaling marker in human models for NAFLD
  • DOI:
    10.1016/s0168-8278(23)02210-9
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ruth Walker;Maria Emilia Dueñas;Jeremy Palmer;Jose Luis Marin-Rubio;Quentin Anstee;Matthias Trost;Olivier Govaere
  • 通讯作者:
    Olivier Govaere

Jeremy Palmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Palmer', 18)}}的其他基金

Collaborative Research: Elements: Multiparticle collision dynamics simulations of mesoscale hydrodynamic interactions in complex soft materials and environments
合作研究:元素:复杂软材料和环境中中尺度流体动力学相互作用的多粒子碰撞动力学模拟
  • 批准号:
    2310725
  • 财政年份:
    2023
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Standard Grant
CAREER: Probing Crystal Nucleation in Soft Confinement with Molecular Simulation
职业:通过分子模拟探测软约束中的晶体成核
  • 批准号:
    1751173
  • 财政年份:
    2018
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Standard Grant
Collaborative Research: NSCI Framework: Software for Building a Community-Based Molecular Modeling Capability Around the Molecular Simulation Design Framework (MoSDeF)
合作研究:NSCI 框架:围绕分子模拟设计框架 (MoSDeF) 构建基于社区的分子建模能力的软件
  • 批准号:
    1835560
  • 财政年份:
    2018
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Standard Grant
Probing Anomalous Nanoparticle Dynamics in Polymer Solutions with Simulation and Experiment
通过模拟和实验探索聚合物溶液中的异常纳米颗粒动力学
  • 批准号:
    1705968
  • 财政年份:
    2017
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Integration of Computation and Experiments to Design a Versatile Platform for Crystal Engineering
DMREF:协作研究:计算和实验相结合,设计用于晶体工程的多功能平台
  • 批准号:
    1629398
  • 财政年份:
    2016
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Standard Grant
EAPSI: Molecular Modeling and Simulation of Disordered Nanoporous Carbons
EAPSI:无序纳米多孔碳的分子建模和模拟
  • 批准号:
    0812942
  • 财政年份:
    2008
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
BNIP-2调控E-cadherin细胞内分选运输的机制研究
  • 批准号:
    32100540
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
磷脂分子参与植物细胞器互作及自噬的调控机制
  • 批准号:
    91954206
  • 批准年份:
    2019
  • 资助金额:
    301.0 万元
  • 项目类别:
    重大研究计划
IRE1α-XBP1在脂肪细胞和肝细胞间跨细胞信号传导机制研究
  • 批准号:
    31900564
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
活细胞高分辨率成像解析clathrin介导的内吞囊泡形成早期内体的分子机制
  • 批准号:
    31970659
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
膜蛋白TMED10调节非经典分泌分子机制的研究
  • 批准号:
    31872832
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
TBC1d23调节细胞器互作及突变引起脑桥小脑发育不全的机制研究
  • 批准号:
    91854121
  • 批准年份:
    2018
  • 资助金额:
    89.0 万元
  • 项目类别:
    重大研究计划
细胞分泌的调控及相关肠炎的机理研究
  • 批准号:
    31871429
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
NRT1.1磷酸化修饰调控植物侧根发育的分子细胞学机制研究
  • 批准号:
    31871424
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Dispersion control of highly luminescent oxide nanoparticles for the evaluation of mass transport in animal cells
高发光氧化物纳米粒子的分散控制,用于评估动物细胞中的传质
  • 批准号:
    23K17844
  • 财政年份:
    2023
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Multiscale approaches to engineering living cells for nanotherapeutic delivery
用于纳米治疗递送的活细胞工程多尺度方法
  • 批准号:
    10711015
  • 财政年份:
    2023
  • 资助金额:
    $ 36.55万
  • 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
  • 批准号:
    10512775
  • 财政年份:
    2022
  • 资助金额:
    $ 36.55万
  • 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
  • 批准号:
    10646371
  • 财政年份:
    2022
  • 资助金额:
    $ 36.55万
  • 项目类别:
Modelling Transport Phenomena of Nanoparticles in Drug Delivery Therapy
药物输送治疗中纳米粒子的运输现象建模
  • 批准号:
    RGPIN-2020-04536
  • 财政年份:
    2022
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafine nanoparticles from decarbonised transport platforms: Reconstructing the analytical puzzle
来自脱碳运输平台的超细纳米颗粒:重建分析难题
  • 批准号:
    2668413
  • 财政年份:
    2022
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Studentship
Transport of Virus-like Nanoparticles through Mucus
通过粘液运输病毒样纳米颗粒
  • 批准号:
    2115827
  • 财政年份:
    2021
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Standard Grant
Enhancing transport and delivery of ferrihydrite nanoparticles via polymer encapsulation in PFAS-contaminated sediments to simulate PFAS defluorination by Acidimicrobium sp. Strain A6
通过聚合物封装在 PFAS 污染的沉积物中增强水铁矿纳米粒子的运输和递送,以模拟 Acidimicrobium sp 的 PFAS 脱氟。
  • 批准号:
    10515660
  • 财政年份:
    2021
  • 资助金额:
    $ 36.55万
  • 项目类别:
Modelling anomalous transport of nanoparticles and DNA repair to improve radiotherapy
模拟纳米粒子的异常运输和 DNA 修复以改善放射治疗
  • 批准号:
    EP/V008641/1
  • 财政年份:
    2021
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Research Grant
Spin transport in magnetic nanoparticles
磁性纳米颗粒中的自旋输运
  • 批准号:
    21K14519
  • 财政年份:
    2021
  • 资助金额:
    $ 36.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了