RUI: Studying the photodynamics of FRET paired fluorescent molecules near gold nanogratings

RUI:研究金纳米光栅附近 FRET 配对荧光分子的光动力学

基本信息

  • 批准号:
    2004681
  • 负责人:
  • 金额:
    $ 25.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Currently patterns on metal surfaces can be fabricated with features in the nanometer (one billionth of a meter) size range. These patterns can interact strongly with particular colors of light. Fluorescent molecules are designed to give off certain colors of light, and are used to mark specific molecules and proteins in biological applications. A nanopatterned metal surface can be made such that its optical properties match a particular fluorescent molecule and enhance the light signal from the molecule. Fluorescent molecules can also transfer light from one molecule to another, and this transfer is extremely sensitive to the distance between molecules. Biologists have used this property to measure distances at the sub-nanometer scale. The team will use the unique optical properties of arrays of gold wires hundreds of nanometers wide to enhance this transfer of energy. The result of this work will aid in the study of this energy transfer in photosynthesis and in applications such as improving light harvesting in organic solar cells. The team will be completely comprised of a diverse set of undergraduate students at Trinity University. The students will take a leading role in every aspect of the experiments, will present their finding at national scientific meetings, and will be co-authors on any publication resulting from this work. Equipment and experimental techniques from this project will be integrated into upper division lab courses, broadening the impact to additional students at Trinity University. This project characterizes the photophysics of Forster resonance energy transfer (FRET) paired donor and acceptor fluorescent molecules near a gold nanograting. The optical properties of structured metal surfaces can be engineered to influence the fluorescence of nearby quantum emitters. Applying this to FRET has many potential advantages, including the ability to enhance the energy transfer rate and increasing the Forster radius of FRET pairs. Metal enhanced fluorescence results from two effects, an enhanced excitation rate of the fluorophores and a decrease in their excited state lifetime of the fluorophore arising from altering the local density of optical states (LDOS). The geometry of gratings uniquely allows these two mechanisms to be measured separately, providing greater insight to the photophysics of the system. Surface plasmon modes on gratings follow a dispersion relationship, allowing for a wide wavelength range of relatively narrow surface plasmon resonances covering both fluorophores’ absorption and emission spectra using a single substrate. Time-correlated single photon counting will be used to directly measure both the FRET energy transfer rate and efficiency as a function of surface plasmon wavelength. DNA will be utilized to attach the donor and acceptor molecules to the nanogratings, allowing for precise spacing between donor and acceptor molecules with respect to each other as well as the nanograting surface. The results of these experiments will allow one to optimize the enhancement in FRET rate and efficiency, as well as directly measure any increase in the Forster radius.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前,金属表面上的图案可以用纳米(十亿分之一米)尺寸范围内的特征来制造。 这些图案可以与特定颜色的光发生强烈的相互作用。 荧光分子被设计成发出某些颜色的光,并用于在生物应用中标记特定的分子和蛋白质。 可以制造纳米图案金属表面,使其光学特性与特定荧光分子匹配并增强来自该分子的光信号。荧光分子还可以将光从一个分子转移到另一个分子,并且这种转移对分子之间的距离极其敏感。生物学家利用这一特性来测量亚纳米尺度的距离。 该团队将利用数百纳米宽的金线阵列的独特光学特性来增强这种能量转移。这项工作的结果将有助于研究光合作用中的能量转移以及改善有机太阳能电池中的光收集等应用。该团队将完全由三一大学的多元化本科生组成。学生们将在实验的各个方面发挥主导作用,将在全国科学会议上展示他们的发现,并将成为这项工作产生的任何出版物的共同作者。该项目的设备和实验技术将被整合到高年级实验室课程中,扩大对三一大学其他学生的影响。该项目描述了金纳米光栅附近福斯特共振能量转移 (FRET) 配对供体和受体荧光分子的光物理学特征。结构化金属表面的光学特性可以被设计为影响附近量子发射器的荧光。将其应用于 FRET 有许多潜在的优势,包括提高能量转移率和增加 FRET 对的福斯特半径的能力。金属增强的荧光由两种效应产生,荧光团的激发速率增强,以及由于改变局部光学态密度(LDOS)而导致荧光团的激发态寿命缩短。光栅的独特几何形状允许单独测量这两种机制,从而为系统的光物理提供更深入的了解。光栅上的表面等离激元模式遵循色散关系,允许使用单个基板实现较窄的表面等离激元共振的较宽波长范围,涵盖荧光团的吸收和发射光谱。 时间相关的单光子计数将用于直接测量 FRET 能量转移率和效率作为表面等离子体波长的函数。 DNA将用于将供体和受体分子附着到纳米光栅上,从而允许供体和受体分子之间以及纳米光栅表面之间的精确间距。这些实验的结果将允许人们优化 FRET 速率和效率的提高,并直接测量福斯特半径的任何增加。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Steele其他文献

<sup>55</sup>Cobalt complexes with pendant carbohydrates as potential PET imaging agents
  • DOI:
    10.1016/j.apradiso.2007.06.003
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cara L. Ferreira;Suzanne Lapi;Jennifer Steele;David E. Green;Thomas J. Ruth;Michael J. Adam;Chris Orvig
  • 通讯作者:
    Chris Orvig
When Quality Improvement Fails: A Case Study
  • DOI:
    10.1016/j.acra.2014.09.005
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jordan Swensson;Bilal Tahir;Jennifer Steele;Richard Gunderman
  • 通讯作者:
    Richard Gunderman
Bridging the knowledge divide in radiology education.
弥合放射学教育的知识鸿沟。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    19.7
  • 作者:
    J. Nyce;Jennifer Steele;R. Gunderman
  • 通讯作者:
    R. Gunderman
Influence of maternal gender-role beliefs and role satisfaction on daughters' vocational interests
  • DOI:
    10.1007/bf01551499
  • 发表时间:
    1996-05-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Jennifer Steele;Julian Barling
  • 通讯作者:
    Julian Barling

Jennifer Steele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Designing and Studying Collaborative Coding Experiences for Middle School Computer Science Education
设计和研究中学计算机科学教育的协作编码体验
  • 批准号:
    2342632
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Standard Grant
Excellence in Research: Developing a Model System for Studying the Determinants of Flower Morphology in Tropical Dioecious Trees
卓越的研究:开发用于研究热带雌雄异株树木花形态决定因素的模型系统
  • 批准号:
    2401525
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Continuing Grant
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Continuing Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Standard Grant
ProtonsInProteins: A novel approach for studying biological proton transfer
ProtonsInProteins:研究生物质子转移的新方法
  • 批准号:
    EP/Z000459/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
Studying Magnetized Binary Star Formation with ALMA
使用 ALMA 研究磁化双星形成
  • 批准号:
    23K22542
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel tractography-guided MRI methods for studying healthy brain ageing
用于研究健康大脑衰老的新型纤维束成像引导 MRI 方法
  • 批准号:
    DP240102161
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Discovery Projects
An ensemble approach to studying the ocean's role in climate change
研究海洋在气候变化中的作用的整体方法
  • 批准号:
    DP240101274
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了