Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
基本信息
- 批准号:2349575
- 负责人:
- 金额:$ 33.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator (PI) will study evolution equations that arise in several physical models of nature, including Einstein’s equations of general relativity, Maxwell’s equations of electromagnetism, Euler’s equations of compressible fluid mechanics, and new, modified versions of Euler’s equations that account for viscous effects that were experimentally discovered in the study of the Quark-Gluon Plasma and neutron stars. While these equations have been studied for many decades, much remains to be understood about the dynamics of solutions. This project will focus on deriving theoretical results in one of the most exciting and rapidly advancing areas of study: singularity formation. Roughly, singularities are infinities that can develop in solutions, making the equations exceptionally challenging to study. Such infinities lie at the crux of some of the most fascinating physical phenomena. Outstanding examples include Big Bangs in general relativity, where the curvature of spacetime becomes infinite, and shock waves in compressible fluids, where pressure gradients become infinitely large. The results of the project will shed deep new insights into the laws of nature. The PI will integrate education, research, and scientific training by incorporating undergraduates, Master’s degree students, PhD students, and postdoctoral scholars into the research program.The PI aims to prove novel stable blowup-results in multidimensions for solutions to the Cauchy problem for the PDE systems mentioned above, which are quasilinear and hyperbolic in character. For compressible Euler flow, the goal is to prove shock-formation, with an eye towards understanding the global structure of the largest possible classical solution, i.e, the Maximal Globally Hyperbolic Development (MGHD). There are currently no results on the global structure of the MGHD, and such results are essential for proving the uniqueness of classical solutions with shocks. For the viscous fluid models, there are currently no constructive blowup-results, so any constructive singularity-formation result would be the first of its kind. For Einstein’s equations (coupled to various matter models), the goal is to understand the structure and stability of spacetime singularities, with a focus on techniques that are localizable and robust, thus allowing one to probe new solution regimes. In all of the problems, gauge choices motivated by geometric and analytical considerations lie at the heart of the analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
主要研究员(PI)将研究自然界的几个物理模型中出现的演化方程,包括爱因斯坦的广义相对论方程,电磁学的麦克斯韦方程,可压缩流体力学的欧拉方程,以及新的,修改后的版本欧拉方程,该方程解释了在夸克-胶子等离子体和中子星的研究中实验发现的粘性效应。虽然这些方程已经被研究了几十年,但关于解的动力学仍有许多问题有待理解。该项目将专注于在最令人兴奋和快速发展的研究领域之一:奇点形成中得出理论结果。粗略地说,奇点是可以在解中发展的无穷大,这使得方程的研究非常具有挑战性。这样的无穷大是一些最迷人的物理现象的关键所在。突出的例子包括广义相对论中的大爆炸,时空的曲率变得无限大,以及可压缩流体中的冲击波,压力梯度变得无限大。该项目的成果将对自然规律产生深刻的新见解。PI将通过将本科生、硕士生、博士生和博士后学者纳入研究计划来整合教育、研究和科学培训。PI的目标是证明上述拟线性和双曲型PDE系统Cauchy问题解的多维稳定爆破结果。对于可压缩欧拉流,目标是证明激波的形成,着眼于理解最大可能经典解的全局结构,即最大全局双曲展开(MGHD)。目前还没有结果的整体结构的MGHD,这些结果是必不可少的证明的唯一性的经典解的冲击。对于粘性流体模型,目前还没有建设性的爆破结果,所以任何建设性的奇性形成的结果将是第一次。对于爱因斯坦方程(耦合到各种物质模型),目标是了解时空奇点的结构和稳定性,重点是可局部化和鲁棒的技术,从而使人们能够探索新的解决方案。在所有的问题中,基于几何和分析考虑的量规选择是分析的核心。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Speck其他文献
The emergence of the singular boundary from the crease in $3D$ compressible Euler flow
$3D$ 可压缩欧拉流中奇异边界的出现
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
L. Abbrescia;Jared Speck - 通讯作者:
Jared Speck
Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearities
- DOI:
10.2140/apde.2020.13.93 - 发表时间:
2017-09 - 期刊:
- 影响因子:2.2
- 作者:
Jared Speck - 通讯作者:
Jared Speck
The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant
- DOI:
10.1007/s00029-012-0090-6 - 发表时间:
2011-02 - 期刊:
- 影响因子:0
- 作者:
Jared Speck - 通讯作者:
Jared Speck
The Maximal Development of Near-FLRW Data for the Einstein-Scalar Field System with Spatial Topology $${\mathbb{S}^3}$$
- DOI:
10.1007/s00220-018-3272-z - 发表时间:
2018-10-19 - 期刊:
- 影响因子:2.600
- 作者:
Jared Speck - 通讯作者:
Jared Speck
A Summary of Some New Results on the Formation of Shocks in the Presence of Vorticity
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jared Speck - 通讯作者:
Jared Speck
Jared Speck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jared Speck', 18)}}的其他基金
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
- 批准号:
2054184 - 财政年份:2021
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
- 批准号:
1914537 - 财政年份:2018
- 资助金额:
$ 33.09万 - 项目类别:
Continuing Grant
CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
- 批准号:
1454419 - 财政年份:2015
- 资助金额:
$ 33.09万 - 项目类别:
Continuing Grant
The Global Analysis of Fluids in General Relativity
广义相对论中流体的整体分析
- 批准号:
1162211 - 财政年份:2012
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
相似国自然基金
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
相似海外基金
Studying the selectivity control of promoted FTS catalysts using infra-red techniques
利用红外技术研究促进费托合成催化剂的选择性控制
- 批准号:
2903314 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Studentship
Studying the immune system effects of INSL5 using cell co-culture techniques
使用细胞共培养技术研究 INSL5 对免疫系统的影响
- 批准号:
573866-2022 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
University Undergraduate Student Research Awards
Computational techniques for studying the interactions of radiation with matter and applications in radiotherapy physics
研究辐射与物质相互作用的计算技术及其在放射治疗物理中的应用
- 批准号:
RGPIN-2016-06267 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Discovery Grants Program - Individual
Development of new 17O NMR spectroscopic techniques for studying biological systems
开发用于研究生物系统的新型 17O NMR 波谱技术
- 批准号:
RGPIN-2021-03140 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Discovery Grants Program - Individual
New approach to studying white matter aging: symmetric multimodal fusion of MRI techniques targeting different biophysical properties of white matter
研究白质衰老的新方法:针对白质不同生物物理特性的 MRI 技术的对称多模态融合
- 批准号:
10303968 - 财政年份:2021
- 资助金额:
$ 33.09万 - 项目类别:
Development of new 17O NMR spectroscopic techniques for studying biological systems
开发用于研究生物系统的新型 17O NMR 波谱技术
- 批准号:
RGPIN-2021-03140 - 财政年份:2021
- 资助金额:
$ 33.09万 - 项目类别:
Discovery Grants Program - Individual
Computational techniques for studying the interactions of radiation with matter and applications in radiotherapy physics
研究辐射与物质相互作用的计算技术及其在放射治疗物理中的应用
- 批准号:
RGPIN-2016-06267 - 财政年份:2021
- 资助金额:
$ 33.09万 - 项目类别:
Discovery Grants Program - Individual
Computational techniques for studying the interactions of radiation with matter and applications in radiotherapy physics
研究辐射与物质相互作用的计算技术及其在放射治疗物理中的应用
- 批准号:
RGPIN-2016-06267 - 财政年份:2020
- 资助金额:
$ 33.09万 - 项目类别:
Discovery Grants Program - Individual
From Macro to Micro: Studying the Corrosion of Stainless Steel Thermal Spray Coatings using Electrochemical Techniques
从宏观到微观:利用电化学技术研究不锈钢热喷涂层的腐蚀
- 批准号:
519521-2018 - 财政年份:2020
- 资助金额:
$ 33.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Studying embryo development by novel microscopy techniques for improving IVF screening
通过新型显微镜技术研究胚胎发育以改善 IVF 筛选
- 批准号:
2155568 - 财政年份:2019
- 资助金额:
$ 33.09万 - 项目类别:
Studentship