CAS:Scalable platform for materials fabrication from genetically engineered bacterial biomass

CAS:利用基因工程细菌生物质制造材料的可扩展平台

基本信息

  • 批准号:
    2004875
  • 负责人:
  • 金额:
    $ 45.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical summary:The purpose of this project is to investigate the use of proteins derived from bacterial biofilms as a new class of biopolymers for bioplastics production. There is an urgent need for alternatives to conventional plastics, whose manufacture is projected to increase, despite its significant contributions to global greenhouse gas emissions, and the environmental damage caused by its lack of biodegradability. Although a few biodegradable bioplastics exist, they lack the required physical properties to be suitable as replacements for most conventional plastics because they are made from a limited set of naturally occurring biopolymers. An attractive solution leverages recent advances in the field of synthetic biology to create entirely new biopolymers using engineered microbes. With a previous NSF-funded grant, the investigators developed a method to produce customizable protein polymers using engineered non-pathogenic E. coli. This technology enables the molecular structure of the protein polymers to be tailored to exhibit a desired set of properties, analogous to the way that synthetic chemistry can be used to tailor the structures of conventional polymers. For this project, they will further investigate the use of this platform for the production of bioplastics with enhanced material properties. Their approach will involve three aims: 1) engineering the structures of the protein polymers themselves, in order to make them tougher; 2) engineering the microbes that produce the protein polymers to maximize the amount that they produce; and, 3) fabricating bioplastics from the microbial biomass and characterizing their properties. The results from this work will help push the boundaries of national biomanufacturing capabilities, helping shift them toward more sustainable paradigms that will address the imminent challenges of climate change and plastic pollution. The technical research plan is integrated with a plan to introduce emerging topics related to biomanufacturing in coursework targeted toward university students and enable them to advance the engineering of biological systems with hands-on training and creative problem solving.Technical summary:This proposal describes an integrated research and teaching effort that will push the frontiers of biomaterials and biomanufacturing technologies and encompass the training of science and engineering students at multiple skill levels. The proposed research addresses an urgent need for biodegradable bioplastics with enhanced material properties. Conventional plastics are a major source of pollution in our waterways and landfills, and their manufacture contributes significantly to global greenhouse gas emissions. Microbially derived biodegradable bioplastics are an attractive way to address these problems because they are amenable to scaled-up production via fermentation and can rely on renewable feedstocks. However, existing methods for making microbially derived bioplastics rely exclusively on a limited set of naturally occurring biopolymers that exhibit sub-optimal material properties and require cumbersome purification and downstream processing in order to be functional. This project investigates the use of engineered microbes capable of producing protein polymers, whose structure can be tuned through genetic engineering, as a means for producing biodegradable bioplastics with enhanced material properties. In a manner that is analogous to the use of synthetic chemistry to create petroleum-derived polymers with structures highly tailored for specific applications, this project will use synthetic biology to create new biopolymers with tunable properties. The project aims focus on investigating complementary aspects of this new biomanufacturing approach: 1) engineering recombinant protein fibers produced by E. coli to exhibit increased mechanical robustness, 2) engineering the E. coli chassis to maximize the production of these protein fibers; and, 3) developing protocols that make use of whole microbial biomass in order to streamline the bioplastic fabrication process in a manner that is suitable for scaled-up manufacturing. The work will advance fundamental research in protein engineering, metabolic engineering, and biomaterials science to advance its aims. The proposal will also incorporate foundational aspects of biomaterials and biomanufacturing theory and practice into new coursework to be developed at Northeastern University (NEU), and the re-establishment of an iGEM team at NEU.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:该项目的目的是研究使用细菌生物膜衍生的蛋白质作为一类新的生物聚合物用于生物塑料生产。目前迫切需要替代传统塑料的替代品,尽管传统塑料对全球温室气体排放有重大贡献,并且由于其缺乏生物降解性而造成环境破坏,但其制造量预计将增加。虽然存在一些可生物降解的生物塑料,但它们缺乏所需的物理特性,无法替代大多数传统塑料,因为它们是由有限的天然生物聚合物制成的。一个有吸引力的解决方案利用合成生物学领域的最新进展,使用工程微生物创造全新的生物聚合物。利用之前NSF资助的资金,研究人员开发了一种方法,使用工程化的非致病性E。杆菌这种技术使蛋白质聚合物的分子结构能够被定制以表现出所需的一组特性,类似于合成化学可以用于定制常规聚合物的结构的方式。对于这个项目,他们将进一步研究使用这个平台生产具有增强材料性能的生物塑料。他们的方法将涉及三个目标:1)设计蛋白质聚合物本身的结构,以使它们更坚固; 2)设计产生蛋白质聚合物的微生物,以最大限度地提高它们的产量; 3)从微生物生物质中制造生物塑料并表征其特性。这项工作的结果将有助于推动国家生物制造能力的界限,帮助它们转向更可持续的范式,以应对气候变化和塑料污染的紧迫挑战。技术研究计划与面向大学生的课程中引入与生物制造相关的新兴课题的计划相结合,使他们能够通过实践培训和创造性解决问题来推进生物系统的工程。技术概要:该提案描述了一项综合研究和教学工作,将推动生物材料和生物制造技术的前沿,并包括在多个技能水平上培养理工科学生。拟议的研究解决了对具有增强材料性能的可生物降解生物塑料的迫切需求。传统塑料是我们的水道和垃圾填埋场的主要污染源,其制造对全球温室气体排放有重大贡献。微生物衍生的生物可降解生物塑料是解决这些问题的一种有吸引力的方法,因为它们可以通过发酵进行规模化生产,并且可以依赖可再生原料。然而,现有的用于制造微生物衍生的生物塑料的方法仅依赖于有限的一组天然存在的生物聚合物,其表现出次优的材料性质,并且需要繁琐的纯化和下游加工才能发挥作用。该项目研究使用能够生产蛋白质聚合物的工程微生物,其结构可以通过基因工程进行调整,作为生产具有增强材料性能的可生物降解生物塑料的手段。以类似于使用合成化学来创建具有针对特定应用高度定制的结构的石油衍生聚合物的方式,该项目将使用合成生物学来创建具有可调特性的新生物聚合物。该项目的目的是研究这种新的生物制造方法的补充方面:1)工程重组蛋白纤维产生的E。大肠杆菌表现出增加的机械鲁棒性,2)工程化E.大肠杆菌底盘,以最大限度地生产这些蛋白质纤维;和,3)开发协议,利用整个微生物生物量,以简化生物塑料制造过程的方式,适合于规模扩大的制造。这项工作将推进蛋白质工程、代谢工程和生物材料科学的基础研究,以实现其目标。该提案还将把生物材料和生物制造理论与实践的基础方面纳入东北大学(NEU)开发的新课程,并在NEU重新建立iGEM团队。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Water-processable, biodegradable and coatable aquaplastic from engineered biofilms.
  • DOI:
    10.1038/s41589-021-00773-y
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    14.8
  • 作者:
    Duraj-Thatte AM;Manjula-Basavanna A;Courchesne ND;Cannici GI;Sánchez-Ferrer A;Frank BP;Van't Hag L;Cotts SK;Fairbrother DH;Mezzenga R;Joshi NS
  • 通讯作者:
    Joshi NS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neel Joshi其他文献

Efficient Pipeline for Automating Species ID in new Camera Trap Projects
在新相机陷阱项目中实现物种 ID 自动化的高效流程
A Comprehensive Survey of Services Provided by Prevalent Cloud Computing Environments
对流行云计算环境提供的服务的全面调查
Eyes-Free Art
无眼艺术
Aggressive organ donor management: more from less?
积极的器官捐献者管理:从少到多?
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neel Joshi;D. Margulies
  • 通讯作者:
    D. Margulies
Motion Blur
  • DOI:
    10.1007/978-3-030-03243-2_512-1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neel Joshi
  • 通讯作者:
    Neel Joshi

Neel Joshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neel Joshi', 18)}}的其他基金

SusChEM: Engineered protein-based biofilms as functional advanced materials
SusChEM:基于蛋白质的工程生物膜作为功能先进材料
  • 批准号:
    1410751
  • 财政年份:
    2014
  • 资助金额:
    $ 45.83万
  • 项目类别:
    Standard Grant
Calmodulin-based allosteric switches as a modular platform for peptide biosensors
基于钙调蛋白的变构开关作为肽生物传感器的模块化平台
  • 批准号:
    1158784
  • 财政年份:
    2012
  • 资助金额:
    $ 45.83万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 45.83万
  • 项目类别:
    Standard Grant
SensorGROW - an intuitive, cost effective and scalable precision growing platform, powered by a network of unified agri-sensor nodes
SensorGROW - 直观、经济高效且可扩展的精准种植平台,由统一农业传感器节点网络提供支持
  • 批准号:
    10095990
  • 财政年份:
    2024
  • 资助金额:
    $ 45.83万
  • 项目类别:
    Collaborative R&D
Creating an optimized and scalable production platform in suspension adapted serum-free HEK293 cells for rAAV gene delivery using a Design-of-Experime
使用实验设计在悬浮适应的无血清 HEK293 细胞中创建优化且可扩展的生产平台,用于 rAAV 基因递送
  • 批准号:
    2776049
  • 财政年份:
    2023
  • 资助金额:
    $ 45.83万
  • 项目类别:
    Studentship
A Platform for Scalable Spatial Somatic Variant Profiling
可扩展的空间体细胞变异分析平台
  • 批准号:
    10662761
  • 财政年份:
    2023
  • 资助金额:
    $ 45.83万
  • 项目类别:
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
  • 批准号:
    10725550
  • 财政年份:
    2023
  • 资助金额:
    $ 45.83万
  • 项目类别:
A Uniquely Scalable Approach to Sequence Tens of Millions of Single Cells Without Compromising Performance
一种独特的可扩展方法,可在不影响性能的情况下对数千万个单细胞进行测序
  • 批准号:
    10700398
  • 财政年份:
    2023
  • 资助金额:
    $ 45.83万
  • 项目类别:
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 45.83万
  • 项目类别:
    Standard Grant
Developing a Digital Platform for Providing Scalable and Actionable Feedback to Support Students' Development of Professional Skills
开发一个数字平台,提供可扩展且可操作的反馈,以支持学生的专业技能发展
  • 批准号:
    2235606
  • 财政年份:
    2023
  • 资助金额:
    $ 45.83万
  • 项目类别:
    Standard Grant
SBIR Phase II: Scalable Production of Platform Chemicals from Inedible Biomass and Carbon Dioxide
SBIR 第二阶段:利用非食用生物质和二氧化碳大规模生产平台化学品
  • 批准号:
    2301417
  • 财政年份:
    2023
  • 资助金额:
    $ 45.83万
  • 项目类别:
    Cooperative Agreement
Real time risk prognostication via scalable hazard trees and forests
通过可扩展的危险树和森林进行实时风险预测
  • 批准号:
    10655749
  • 财政年份:
    2023
  • 资助金额:
    $ 45.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了