Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
基本信息
- 批准号:2225900
- 负责人:
- 金额:$ 41.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The total energy consumption by opto-electronic devices is predicted to surpass the global energy production by the year 2040 unless radical changes are made in their design and manufacturing and large improvements in their performance. This grant supports research that helps to alleviate this challenge by pioneering an innovative manufacturing approach that enables novel and highly efficient three-dimensional chip designs that do not rely on unsustainable miniaturization of the traditional chip architectures. Such three-dimensional architectures are only accessible via new bottom-up manufacturing processes that build and assemble devices in an additive manner via atomically precise and self-aligned positioning of the device components. Current top-down manufacturing does not leverage energy-efficient chemical processes that can significantly reduce manufacturing energy requirements, nor does it benefit from spontaneous molecular and atomic self-organization phenomena that can reduce the size of the chip components. The goal of this research is to develop a continuous, energy-efficient manufacturing platform for bottom-up deposition and high-resolution patterning of opto-electronic device components. The project impacts a broad range of research fields, including electronics, sensing, catalysis, and optical technology as well as training of the future manufacturing workforce. The results of this research positively impact the U.S. economy and society, delivering significant value and growth potential.The key technologies for enabling atomically precise, bottom-up manufacturing of ultra-efficient electronic, photonic and quantum devices depend on area-selective methods for atomic layer deposition and atomic layer etching. This research addresses the main challenges that preclude widespread implementation of these techniques by integrating universal resist materials, in-situ resist regeneration, and universal photo-initiated resist patterning into a single and continuous manufacturing process that is compatible with a variety of substrates and chemistries without significant optimization. Current area-selective atomic layer deposition relies on resist materials and patterning methods that are highly substrate dependent. The hypothesis is that interactions between atomic layer deposition reagents and resists can essentially be independent from the substrate structure and chemistry. This paradigm fundamentally changes the technological approach by generating the resists using universal small-molecule meta-stable species, such as carbenes and nitrenes, instead of substrate-specific resists that are currently being used. The high reactivity of these species overcomes the diffusion problems with resist deposition and regeneration, is applicable to a variety of materials, is useful within a wide range of conditions, and is easily reproduced, as the chemical processes are quantifiable and scalable. Moreover, such small molecule resists are amenable to universal photo-initiated patterning steps that can be performed in-situ.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预计光电设备的总能源消耗将超过2040年的全球能源产量,除非其设计和制造业进行了根本性的变化以及其性能的巨大改进。这项赠款支持研究,通过开创一种创新的制造方法来帮助缓解这一挑战,该方法使新颖且高效的三维芯片设计不依赖于传统芯片体系结构的不可持续的小型化。这样的三维架构只能通过新的自下而上的制造过程访问,这些过程通过设备组件的原子精确和自我对准的定位以增材方式构建和组装设备。当前的自上而下的制造不利用可以显着降低生产能需求的能源有效的化学过程,也不会受益于自发的分子和原子自组织现象,从而可以减少芯片组件的大小。这项研究的目的是开发一个连续的,节能的制造平台,用于自下而上的沉积和光电设备组件的高分辨率模式。该项目影响了广泛的研究领域,包括电子,传感,催化和光学技术以及对未来制造业劳动力的培训。这项研究的结果对美国的经济和社会产生了积极影响,具有巨大的价值和增长潜力。实现原子精确,自下而上的超高电子,光子和量子设备的自下而上的制造取决于原子层沉积和原子层蚀刻的面积选择方法。这项研究解决了通过整合通用抗性材料,原位抵抗再生以及通用光启动的抗性图案将这些技术广泛实施的主要挑战,该抗抑郁材料与各种底物和化学作用兼容了单个且连续的制造过程,而无需进行重大优化。当前的区域选择性原子层沉积依赖于高度底物的抵抗材料和图案化方法。假设是,原子层沉积试剂和抵抗之间的相互作用基本上可以独立于底物结构和化学。这种范式从根本上通过使用通用的小分子元稳定物种(例如碳烯和硝酸盐)产生抵抗,而不是目前正在使用的底物特异性抵抗者,从而改变了技术方法。这些物种的高反应性克服了抗性沉积和再生的扩散问题,适用于多种材料,在各种条件下都有用,并且由于化学过程是可量化的,可扩展的。此外,如此小的分子抵抗可以接受可以在原位执行的通用照片引发的图案步骤。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查标准来评估的值得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Teplyakov其他文献
Andrew Teplyakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Teplyakov', 18)}}的其他基金
MRI: Acquisition of a Time-of-Fight Secondary Ion Mass Spectrometer
MRI:购买战斗时间二次离子质谱仪
- 批准号:
2116754 - 财政年份:2021
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
New Etching Methodologies for Atomic Level Precision in Manufacturing Processes at the Micro-to-Nanoscale
在微纳米级制造过程中实现原子级精度的新蚀刻方法
- 批准号:
2035154 - 财政年份:2020
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
Reversible Tuning of Surface Chemical Reactivity in Thin Solid Films
固体薄膜表面化学反应性的可逆调节
- 批准号:
1057374 - 财政年份:2011
- 资助金额:
$ 41.58万 - 项目类别:
Continuing Grant
Chemical Control over Interface Formation and Impurity Introduction and Distribution in Thin Solid Films
对固体薄膜中界面形成以及杂质引入和分布的化学控制
- 批准号:
0650123 - 财政年份:2007
- 资助金额:
$ 41.58万 - 项目类别:
Continuing Grant
Atomic Level Control of Interface Chemistry for Metal Deposition on Semiconductors
半导体金属沉积界面化学的原子级控制
- 批准号:
0313803 - 财政年份:2003
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高并发软件的可扩展建模与分析技术研究
- 批准号:62302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
- 批准号:62306062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant