Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries

合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学

基本信息

  • 批准号:
    2005165
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Summary With this collaborative project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, two research groups at the University of California Riverside and Oregon State University investigate fundamental aspects of how fast diffusion of hydrogen ions occurs in confined networks of water. When metal ions move though water, they push past the water molecules as they go. It is already known that hydrogen ions migrate in a completely different manner and faster. The researchers study in detail how this process works and what makes it many times faster than the diffusion of metal ions, for example what makes it faster than that of lithium ions in batteries. Several factors can enable very fast, hydrogen-ion batteries that have the potential to be charged and discharged for millions of cycles, and so present a remarkable opportunity to realize the Holy Grail of electrochemical energy storage: to achieve simultaneously the energy densities of batteries and the power and cycle life of capacitors. The abundance of hydrogen also makes hydrogen-ion batteries a promising candidate for the grid-level storage batteries that are needed to provide a continuous and dependable electricity supply from intermittent power sources such as wind and solar energy. Advancing knowledge and the associated technology in these areas aids the United States to remain economically competitive. Additionally, the project produces educational videos targeted to students and the broader public that present concepts in energy storage and its role in society. Training of graduate and undergraduate students with the skills needed to enter the workforce in the energy technology sector and additional outreach activities take place at both institutions.Technical Summary The existing knowledge of battery chemistry is built upon the understanding that the kinetics are dictated by desolvation and vehicular diffusion of the working ion. The research in this collaborative project, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, explores a new paradigm of battery chemistry where by using protons as the working ions with an aqueous electrolyte, charge conduction does not rely on the long-range physical migration of ions through the host electrode but instead obtains long-range movement of charge via the Grotthuss mechanism of proton displacement along the crystal water network in an electrode. Transport of protons via the Grotthuss mechanism involves the movement of a quasiparticle defect in the bonding topology of water. It is fundamentally different from the vehicular transport of metal cations and could give rise to ultra-fast insertion kinetics and the ability to provide batteries that deliver high power at ultra-low temperatures. The project focuses on mechanisms of proton transport and storage in Turnbull blue and its family of analog compounds. These systems have an open and defected crystal structure that hosts an internal network of crystal water. The crystal water network provides pathways for Grotthuss diffusion, making the kinetics of proton transport and storage exceedingly fast, even at temperatures well below the freezing temperature of water. This project tests the central hypothesis that the transport performance of protons in this system depends on the topology imposed on the H-bonding network of crystal water by the surrounding host framework. To test this, the researchers a. determine the topological characteristics of the water network in Prussian blue analogs, from the atomic to the mesoscopic scale, and the role they play in Grotthuss topochemistry; b. elucidate the mechanisms of proton insertion, storage, and transport in the water network within Prussian blue analogs at all states of charge; and c. formulate testable design principles that can guide the development of new reticular materials for proton transport and storage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结通过这一合作项目,加州大学河滨分校和俄勒冈州立大学的两个研究小组在NSF材料研究部的固态和材料化学计划的支持下,研究氢离子在受限水网络中如何快速扩散的基本方面。当金属离子在水中移动时,它们会推过水分子。众所周知,氢离子以一种完全不同的方式迁移,而且速度更快。研究人员详细研究了这个过程是如何工作的,以及是什么让它比金属离子的扩散快很多倍,例如,是什么让它比电池中的锂离子快。有几个因素可以使极快的氢离子电池具有数百万次充放电的潜力,因此为实现电化学能量存储的圣杯提供了一个非凡的机会:同时实现电池的能量密度以及电容器的功率和循环寿命。丰富的氢气还使氢离子电池成为网格级存储电池的一个有希望的候选者,这些电池需要从风能和太阳能等间歇性能源提供持续可靠的电力供应。这些领域不断进步的知识和相关技术有助于美国保持经济竞争力。此外,该项目还制作了针对学生和更广泛公众的教育视频,展示了能源储存的概念及其在社会中的作用。对研究生和本科生进行培训,使他们掌握进入能源技术部门工作所需的技能,并在这两个机构开展其他外展活动。技术总结现有的电池化学知识是建立在理解动力学由工作离子的去溶和车辆扩散决定的基础上的。在NSF材料研究部固态和材料化学计划的支持下,这一合作项目的研究探索了一种新的电池化学范式,通过使用质子作为工作离子和水溶液,电荷传导不依赖于离子通过主体电极的远程物理迁移,而是通过质子沿电极中结晶水网络的格洛特斯位移机制获得电荷的远程移动。通过格洛特劳斯机制的质子输运涉及水的成键拓扑中准粒子缺陷的运动。它从根本上不同于金属离子的车辆运输,可以产生超快的插入动力学,并能够提供在超低温下提供高功率的电池。该项目的重点是特恩布尔蓝及其类似物家族中的质子运输和储存机制。这些系统具有开放的和有缺陷的晶体结构,该结构承载着结晶水的内部网络。结晶水网络为格洛特苏斯扩散提供了途径,使得质子传输和存储的动力学非常快,即使在远低于水的冰点的温度下也是如此。本项目验证了中心假设,即质子在该体系中的传输性能取决于周围主体骨架施加在结晶水的氢键网络上的拓扑结构。为了测试这一点,研究人员A.确定了普鲁士蓝类似物中水网络的拓扑特征,从原子到介观尺度,以及它们在格洛图斯拓扑化学中所起的作用;B.阐明了所有带电状态下普鲁士蓝类似物内水网络中质子插入、存储和传输的机制;C.制定了可测试的设计原则,可以指导质子运输和存储的新网状材料的开发。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Greaney其他文献

Peter Greaney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Greaney', 18)}}的其他基金

Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode
合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性
  • 批准号:
    2038366
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Design of Metal-Organic Framework Materials
合作研究:金属有机框架材料的计算设计
  • 批准号:
    1663360
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Engineering Smart Thermal Properties in Metal-Organic-Frameworks
金属有机框架中的工程智能热性能
  • 批准号:
    1403423
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314719
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314720
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
  • 批准号:
    2204075
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
  • 批准号:
    2204074
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries
合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学
  • 批准号:
    2004636
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Elucidation of Supramolecular Assembly and Allostery with Experimental Validation
合作研究:超分子组装和变构的几何阐明与实验验证
  • 批准号:
    1563291
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geometric Elucidation of Supramolecular Assembly and Allostery with Experimental Validation
合作研究:超分子组装和变构的几何阐明与实验验证
  • 批准号:
    1563234
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Japan-Korea collaborative research works on elucidation of the relationships between conservation of biodiversity and livestock production/healthiness in the Eastern Asia
日韩合作研究致力于阐明东亚生物多样性保护与畜牧生产/健康之间的关系
  • 批准号:
    26292142
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Extensin Modules Comprising Self-Assembling Amphiphiles Create Scaffolds that Nucleate Cell Wall Formation: Elucidation of Roles and Rules
合作研究:包含自组装两亲物的延伸蛋白模块创建使细胞壁形成成核的支架:作用和规则的阐明
  • 批准号:
    0955569
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Extensin modules comprising self-assembling amphiphiles create scaffolds that nucleate cell wall formation: elucidation of roles and rules
合作研究:包含自组装两亲物的延伸蛋白模块创建使细胞壁形成成核的支架:作用和规则的阐明
  • 批准号:
    0955805
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了