Connected Isotropy Groups in the Grove Symmetry Program
Grove 对称程序中的连通各向同性群
基本信息
- 批准号:2005280
- 负责人:
- 金额:$ 18.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI seeks to advance understanding of the interaction between the local, geometric properties and the global, topological properties of smooth objects called manifolds. This continues work that goes back over 150 years to the origins of Riemannian geometry, and it involves questions asked decades ago that still have no answers. Fortunately viewing some of these problems through the lens of symmetry in the last 25 years has led to major advances, the development of new tools, and the construction of new examples. The PI collaborates widely and plays his part in tying together the world’s people and their economies. With an eye to the future, the PI is also actively involved in the growth, education, and diversification of tomorrow’s body of U.S.-based, STEM-focused researchers. In the past ten years, the PI and his collaborators have proved striking new results in the Grove symmetry program. This program was developed in the 1990s to provide a foothold into the basic but difficult questions in Riemannian geometry around positive curvature. These new results have required new tools. For example, the PI and his collaborators have recently obtained surprising results for torus representations with connected isotropy groups. The proofs use only elementary representation theory. In particular, they do not involve curvature assumptions and might therefore have wider applications in other areas of geometry. Completing this work and further investigating its applications are top priorities for this project period.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI旨在促进对称为流形的光滑物体的局部几何性质和全局拓扑性质之间相互作用的理解。这项工作可以追溯到150多年前黎曼几何的起源,它涉及几十年前提出的问题,仍然没有答案。幸运的是,在过去的25年里,通过对称性的透镜来看待这些问题,已经取得了重大进展,开发了新的工具,并建立了新的例子。PI广泛合作,并在将世界人民及其经济联系在一起方面发挥作用。着眼于未来,PI还积极参与未来美国机构的成长,教育和多样化。以STEM为中心的研究人员。在过去的十年里,PI和他的合作者在格罗夫对称性计划中证明了惊人的新结果。这个程序是在20世纪90年代开发的,为黎曼几何中围绕正曲率的基本但困难的问题提供了一个立足点。这些新成果需要新的工具。例如,PI和他的合作者最近获得了令人惊讶的结果与连接各向同性群的环面表示。证明只使用初等表示理论。特别是,它们不涉及曲率假设,因此可能在其他几何领域有更广泛的应用。完成这项工作并进一步调查其应用是该项目期间的首要任务。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Halperin’s conjecture in formal dimensions up to 20
- DOI:10.1080/00927872.2023.2186705
- 发表时间:2021-04
- 期刊:
- 影响因子:0.7
- 作者:Lee Kennard;Yantao Wu
- 通讯作者:Lee Kennard;Yantao Wu
Cohomogeneity One Manifolds with Singly Generated Rational Cohomology
具有单生成有理上同调的同齐性一流形
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:DeVito, Jason;Kennard, Lee
- 通讯作者:Kennard, Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Kennard其他文献
On the Hopf conjectures with symmetry
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Lee Kennard - 通讯作者:
Lee Kennard
Positive curvature and rational ellipticity
正曲率和有理椭圆率
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Manuel Amann;Lee Kennard - 通讯作者:
Lee Kennard
Geometry of Manifolds with Non-negative Sectional Curvature
非负截面曲率流形的几何形状
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Owen Dearricott;R. Herrera;L. H. Lamoneda;F. Galaz‐García;Lee Kennard;C. Searle;G. Weingart;W. Ziller - 通讯作者:
W. Ziller
Positively curved metrics on symmetric spaces with large symmetry rank
- DOI:
- 发表时间:
2012-09 - 期刊:
- 影响因子:0
- 作者:
Lee Kennard - 通讯作者:
Lee Kennard
On the Hopf conjecture with symmetry
- DOI:
10.2140/gt.2013.17.563 - 发表时间:
2012-03 - 期刊:
- 影响因子:2
- 作者:
Lee Kennard - 通讯作者:
Lee Kennard
Lee Kennard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Kennard', 18)}}的其他基金
Australian-German Workshop on Differential Geometry in the Large
澳大利亚-德国大微分几何研讨会
- 批准号:
1855960 - 财政年份:2019
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Curvature, Symmetry, and Periodic Cohomology
曲率、对称性和周期上同调
- 批准号:
1904354 - 财政年份:2018
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Curvature, Symmetry, and Periodic Cohomology
曲率、对称性和周期上同调
- 批准号:
1708493 - 财政年份:2017
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Obstructions to positive curvature and symmetry
正曲率和对称性的障碍
- 批准号:
1622541 - 财政年份:2015
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Obstructions to positive curvature and symmetry
正曲率和对称性的障碍
- 批准号:
1404670 - 财政年份:2014
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
相似海外基金
New fifth parameter for transverse isotropy and reconstruction of the reference model of the Earth
用于横向各向同性和地球参考模型重建的新第五参数
- 批准号:
17H02948 - 财政年份:2017
- 资助金额:
$ 18.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design and Structural Optimization in Additive Manufacturing - From Isotropy to Anisotropy
增材制造中的设计和结构优化 - 从各向同性到各向异性
- 批准号:
2695259 - 财政年份:2017
- 资助金额:
$ 18.14万 - 项目类别:
Studentship
Cosmological tests of the large scale isotropy of the universe
宇宙大尺度各向同性的宇宙学测试
- 批准号:
425790-2012 - 财政年份:2012
- 资助金额:
$ 18.14万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Testing the Statistical Isotropy of the Universe
测试宇宙的统计各向同性
- 批准号:
0807564 - 财政年份:2008
- 资助金额:
$ 18.14万 - 项目类别:
Continuing Grant
High-precision test of isotropy of light propagation using actively rotated optical resonators
使用主动旋转光学谐振器高精度测试光传播的各向同性
- 批准号:
19760781 - 财政年份:2006
- 资助金额:
$ 18.14万 - 项目类别:
Research Grants
Isotropy representations associated with Harish-Chandra modules and nilpotent orbit theory
与 Harish-Chandra 模和幂零轨道理论相关的各向同性表示
- 批准号:
14340001 - 财政年份:2002
- 资助金额:
$ 18.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Universality and isotropy of velocity and scalars in turbulence: experimental tests and implications for subfilter-scale models
湍流中速度和标量的普遍性和各向同性:实验测试和对子过滤尺度模型的影响
- 批准号:
0120317 - 财政年份:2001
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Cosmic Background Isotropy Measurements from the South Pole
来自南极的宇宙背景各向同性测量
- 批准号:
8716458 - 财政年份:1988
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant
Inflation as an Attractor in Dynamical System and the Isotropy and Homogeneity of the Universe
动力系统中作为吸引子的暴胀以及宇宙的各向同性和均质性
- 批准号:
63540205 - 财政年份:1988
- 资助金额:
$ 18.14万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Transverse Isotropy and the Evolution of the Upper Oceanic Crust
横向各向同性和上洋壳的演化
- 批准号:
8711646 - 财政年份:1987
- 资助金额:
$ 18.14万 - 项目类别:
Standard Grant