Isotropy representations associated with Harish-Chandra modules and nilpotent orbit theory
与 Harish-Chandra 模和幂零轨道理论相关的各向同性表示
基本信息
- 批准号:14340001
- 负责人:
- 金额:$ 5.95万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal purpose of this project is to develop nilpotent orbit theory for Harish-Chandra modules corresponding to irreducible admissible representations of real semisimple Lie groups, in order to get deep understanding on generalized Whittaker models in relation to various nilpotent invariants of representations. We focused our attention to the isotropy representations which give the multiplicities in the associated cycles of Harish-Chandra modules.(1)The isotropy representations have been described explicitly for all singular unitary highest weight modules of simple Hermitian Lie algebras by using the projection to the PRV-components. As a result we have proved the irreducibility of such isotropy representations. A new proof of the Howe duality correspondence for reductive dual pairs is obtained via isotropy representations. For EVII, we have shown that the isotropy representations for certain unitary highest weight modules of non-scalar type give the Dvorski-Sahi correspondence. … More This allows relating the isotropy representations and harmonic analysis on certain compact symmetric spaces of real rank one.(2)General machinery has been established to describe the isotropy representations of Harish-Chandra modules with irreducible associated varieties, by using the principal symbols of differential operators of gradient-type. Applying this machinery, we have revealed an explicit relationship between the isotropy representations for discrete series and the generic fiber of the moment map for the conormal bundle of closed orbits on the flag variety.(3)To identify the generic fiber of the moment map, we have studied the Richardson orbits associated with symmetric pairs. It has been an open problem whether the parabolic subgroups for the Richardson orbits act transitively on the set of Richardson elements in the symmetric part of its nilradical. In this project, we have got a progress to this problem, by giving nice sufficient conditions for the transitivity, and also a counterexample for the Lie groups of type A Less
本项目的主要目的是发展对应于真实的半单李群的不可约容许表示的Harish-Chandra模的幂零轨道理论,以便深入理解广义Whittaker模型与各种幂零不变量的关系。我们把我们的注意力集中到各向同性表示,给出了在相关的循环的Harish-Chandra模块的多重性。(1)利用单Hermitian李代数的PRV-分支的投影,给出了单Hermitian李代数的奇异酉最高权模的各向同性表示。结果证明了这种各向同性表示的不可约性。利用各向同性表示给出了约化对偶对的Howe对偶对应的一个新证明。对于EVII,我们证明了某些非标型酉最高权模的各向同性表示给出了Dvorski-Sahi对应。 ...更多信息 这使得有关的各向同性表示和调和分析某些紧凑的对称空间的真实的秩一。(2)利用梯度型微分算子的主符号,建立了描述具有不可约伴随簇的Harish-Chandra模的各向同性表示的一般机制。应用这一机制,我们已经揭示了一个明确的关系的各向同性表示离散系列和通用纤维的时刻地图的余法线束的封闭轨道的旗品种。(3)To为了确定矩映射的一般纤维,我们研究了与对称对相关的Richardson轨道。Richardson轨道的抛物子群是否传递地作用在其幂零根的对称部分的Richardson元的集合上,一直是一个公开的问题。在这个项目中,我们对这个问题有了一个进展,给出了传递性的充分条件,并给出了A型李群的一个反例。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Theta lifting of unitary lowest weight modules and their associated cycles
单一最低重量模块的 Theta 提升及其相关循环
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Nishiyama;Zhu;Chen-bo
- 通讯作者:Chen-bo
Isotropy representation associated with the discrete series (in Japanese)
与离散序列相关的各向同性表示(日语)
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Hiroshi Yamashita;山下 博;Hiroshi Yamashita;Hiroshi Yamashita
- 通讯作者:Hiroshi Yamashita
Satoshi Naito: "Three kinds of extremal weight vectors fixed by a diagram automorphism"Jornal of Algebra. 268・1. 343-365 (2003)
Satoshi Naito:“由图自同构固定的三种极值权向量”268・1(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A note on affine quotients and equivariant double fibrations
关于仿射商和等变双纤维的注释
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Junya Satoh;K.Nishiyama
- 通讯作者:K.Nishiyama
Crossed Burnside rings.II. The Dress construction of a Green functor.
交叉的伯恩赛德环。II。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:YOSHIDA;Tomoyuki
- 通讯作者:Tomoyuki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMASHITA Hiroshi其他文献
Numerical study on the extent of flow regulation by collateral circulation of cerebral arteries
脑动脉侧支循环流量调节程度的数值研究
- DOI:
10.1299/jsmebiofro.2022.32.2c23 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
NISHIMURA Nozomi;YAMASHITA Hiroshi;OTANI Tomohiro;WADA Shigeo - 通讯作者:
WADA Shigeo
A concept on velocity estimation from magnetic resonance velocity images based on variational optimal boundary control
基于变分最优边界控制的磁共振速度图像速度估计概念
- DOI:
10.1299/jbse.22-00050 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
OTANI Tomohiro;YAMASHITA Hiroshi;IWATA Kazuma;ILIK Selin Yavuz;YAMADA Shigeki;WATANABE Yoshiyuki;WADA Shigeo - 通讯作者:
WADA Shigeo
YAMASHITA Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMASHITA Hiroshi', 18)}}的其他基金
Potential new food web route for coral reef ecosystems based on zooxanthellae
基于虫黄藻的珊瑚礁生态系统潜在的新食物网路线
- 批准号:
18H02270 - 财政年份:2018
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The relationship between hearing loss and vascular disorders in metabolic syndrome patients
代谢综合征患者听力损失与血管疾病的关系
- 批准号:
15K10751 - 财政年份:2015
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Heat Recirculating Type Ultra-micro Combustor with Porous Medium Injector
多孔介质喷射器热循环式超微型燃烧器的研制
- 批准号:
25420158 - 财政年份:2013
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The relationship between the metabolic syndrome and presbycusis
代谢综合征与老年性耳聋的关系
- 批准号:
24592551 - 财政年份:2012
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discharge pattern of symbiotic zooxanthellae from corals
珊瑚共生虫黄藻的排放模式
- 批准号:
23770032 - 财政年份:2011
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Investigation in the pathogenesis of metabolic syndrome with in vivo molecular imaging
体内分子影像研究代谢综合征发病机制
- 批准号:
23591298 - 财政年份:2011
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transformation and Reorganization of Ethnic Religions in the Diaspora with Reference to the dynamism of Hindu and Taoist Ritual Traditions
参考印度教和道教仪式传统的活力,散居海外的民族宗教的转型和重组
- 批准号:
22401017 - 财政年份:2010
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DEVELOPMENT OF NUMERICAL ANALYSIS METHOD BASED ON REACTIVE FLUID MECHANICS FOR INVESTIGATION OF COMBUSTION PHENOMENON IN POROUS MEDIUM
基于反应流体力学研究多孔介质燃烧现象的数值分析方法的发展
- 批准号:
22560193 - 财政年份:2010
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric invariants and model theory for singular unitary representations
奇异酉表示的几何不变量和模型理论
- 批准号:
22540002 - 财政年份:2010
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Relationship between Aging and Heat Shock Response in the Inner Ear
衰老与内耳热休克反应之间的关系
- 批准号:
21592157 - 财政年份:2009
- 资助金额:
$ 5.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Models for nilpotent orbit varieties and their Greenberg transforms
幂零轨道簇模型及其格林伯格变换
- 批准号:
448629-2013 - 财政年份:2013
- 资助金额:
$ 5.95万 - 项目类别:
University Undergraduate Student Research Awards