Design and Structural Optimization in Additive Manufacturing - From Isotropy to Anisotropy

增材制造中的设计和结构优化 - 从各向同性到各向异性

基本信息

  • 批准号:
    2695259
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

This research aims to investigate ways to combine design and structural optimization with anisotropic considerations for additive manufacturing (AM) of lightweight parts with minimized compliance. The scope of this PhD encompassed two major themes: numerical analyses and computational modelling as well as experimental testing and manufacturing. The following three objectives will be the subject of this work:Objective 1: Isotropic topology with orthotropic reinforcement derived from medial axis transformation (MAT)-Content/Numerical Approach: It is envisaged to develop a novel method which combines continuous fibre reinforcement (C-FR) i.e. an effective fibre trajectory planning with topology optimization in an iterative process under the consideration of AM-specific manufacturing constraints. Preliminary investigations and methods on this topic have been published recently (SFF Symp 2018)-Experimental Verification: In order to fabricate these novel AM-designs with tailored fibre paths, a custom multi-material 3D printer enabling fibre reinforced AM (FRAM) was developed and will be further improved. -Potential Applications and Value: This novel approach aims to enhance the performance of AM-parts in terms of stiffness and weight, making them more viable for a wider range of industries. Besides this development towards end-use parts, we seek to gain valuable findings that help streamline the product and development cycles for engineers and designers employing AM processes. Objective 2: Multiscale modelling of mixed architectures with representative volume elements (RVEs) realizing light multifunctional AM-parts-Content/Numerical Approach: This objective aims to develop bio-inspired, light, stiff and robust sandwich structures for AM (see Figure 1). The development of a method which effectively combines topology optimization, C-FR and functionally graded cellular structures will be hereby pursued. From a computational point of view this will include multiscale modelling with dissimilar architectures using RVEs to replicate heterogeneous material characteristics. -Experimental Verification: It is envisaged to employ the above-mentioned custom 3D printer. For the evaluation of the robustness it is intended to conduct for variable loading scenarios.-Potential Applications and Value: This objective aims to combine the two topics in structural optimization for AM which are currently undergoing intense study, namely topology optimization and the employment of cellular structures. This enables the realization of multi-objective structures for AM, which combine e.g. stiffness and strength (fibre reinforced shell) with improved thermal conduction or impact resistance (cellular structure). Possible application can be found in the automotive, the medical engineering and the aerospace sector.Objective 3: Mapping functionally graded lattices to specific mechanical performance-Content/Numerical Approach: The actively researched topic of functionally graded lattices exploits the inherent design freedom of AM for tailored and locally varying material properties. However, in polymer-based AM, certain microstructural grading schemes have not been thoroughly studied yet. For this purpose multiscale modelling approaches using RVEs will be developed helping for a better understanding of these materials and aiding their wider application and adoption. -Experimental Verification: Among others, our custom multi-material 3D will be employed to manufacture advanced microstructurally and compositionally grading cellular structures. Mechanical tests shall help optimizing the computational model. -Potential Applications and Value: These findings will help different industries, which are increasingly adopting cellular structures for the design of their products, to better predict and understand the mechanical characteristics of different cell topologies and therefore enable them to fabricate more efficient structures.
本研究旨在研究将设计和结构优化与各向异性考虑相结合的方法,以最小化合规性来实现轻质零件的增材制造 (AM)。该博士学位的范围涵盖两个主要主题:数值分析和计算建模以及实验测试和制造。以下三个目标将成为这项工作的主题: 目标 1:由中轴变换 (MAT) 衍生的具有正交各向异性增强的各向同性拓扑 - 内容/数值方法:设想开发一种将连续纤维增强 (C-FR) 相结合的新颖方法,即在考虑增材制造特定制造约束的情况下,在迭代过程中进行有效的纤维轨迹规划和拓扑优化。关于这一主题的初步研究和方法最近已发表 (SFF Symp 2018) - 实验验证:为了制造这些具有定制纤维路径的新颖 AM 设计,开发了一种支持纤维增强 AM (FRAM) 的定制多材料 3D 打印机,并将进一步改进。 -潜在应用和价值:这种新颖的方法旨在提高增材制造零件在刚度和重量方面的性能,使其更适用于更广泛的行业。除了针对最终用途零件的开发之外,我们还寻求获得有价值的发现,帮助简化采用增材制造工艺的工程师和设计师的产品和开发周期。目标 2:具有代表性体积单元 (RVE) 的混合架构的多尺度建模,实现轻型多功能 AM 零件内容/数值方法:该目标旨在开发用于 AM 的仿生、轻型、刚性和坚固的夹层结构(见图 1)。我们将致力于开发一种有效结合拓扑优化、C-FR 和功能分级细胞结构的方法。从计算的角度来看,这将包括使用 RVE 复制异质材料特性的不同架构的多尺度建模。 -实验验证:设想采用上述定制3D打印机。为了评估其鲁棒性,旨在对可变负载场景进行评估。-潜在应用和价值:该目标旨在将目前正在深入研究的增材制造结构优化中的两个主题结合起来,即拓扑优化和细胞结构的使用。这使得能够实现 AM 的多目标结构,其中结合了例如刚度和强度(纤维增强外壳),具有改进的导热性或抗冲击性(蜂窝结构)。可能的应用可以在汽车、医学工程和航空航天领域找到。 目标 3:将功能梯度晶格映射到特定的机械性能 - 内容/数值方法:功能梯度晶格的积极研究主题利用增材制造固有的设计自由度来定制和局部变化的材料特性。然而,在基于聚合物的增材制造中,某些微观结构分级方案尚未得到彻底研究。为此,将开发使用 RVE 的多尺度建模方法,帮助更好地理解这些材料并帮助其更广泛的应用和采用。 -实验验证:除其他外,我们的定制多材料 3D 将用于制造先进的微观结构和成分分级蜂窝结构。机械测试应有助于优化计算模型。 -潜在应用和价值:这些发现将帮助越来越多地采用蜂窝结构进行产品设计的不同行业更好地预测和理解不同蜂窝拓扑的机械特性,从而使他们能够制造更高效的结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Development of a Structural Optimization Method for the Midship Section of a Ship with Deep Reinforcement Learning AI incorporating Principal Dimensions as Design Variables
利用深度强化学习人工智能(将主尺寸作为设计变量)开发船舶中段结构优化方法
  • 批准号:
    23K13508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
  • 批准号:
    2120684
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
  • 批准号:
    2120683
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiscale structural optimization based on integrated multidisciplinary system design method
基于多学科综合系统设计方法的多尺度结构优化
  • 批准号:
    21K19768
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Design and Optimization of Joining shaped casting of Al 7xxx structural alloy component using Self Piercing Rivets
Al 7xxx结构合金构件自冲铆钉连接成形铸件的设计与优化
  • 批准号:
    543964-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
  • 批准号:
    2120692
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structural optimization for design of high performance photonic devices based on bi-directional beam propagation method.
基于双向光束传播方法的高性能光子器件设计结构优化
  • 批准号:
    20K22408
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Design and Optimization of Joining shaped casting of Al 7xxx structural alloy component using Self Piercing Rivets
Al 7xxx结构合金构件自冲铆钉连接成形铸件的设计与优化
  • 批准号:
    543964-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Design and Optimization of Joining shaped casting of Al 7xxx structural alloy component using Self Piercing Rivets
Al 7xxx结构合金构件自冲铆钉连接成形铸件的设计与优化
  • 批准号:
    543964-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Multiscale Design Optimization of Structural Components with Periodic Microscopic Architecture
具有周期性微观结构的结构部件的多尺度设计优化
  • 批准号:
    524665-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了