Foliations, Invariant Theory, and Submanifolds
叶状结构、不变理论和子流形
基本信息
- 批准号:2005373
- 负责人:
- 金额:$ 17.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential Geometry is a branch of Mathematics that studies spaces of arbitrary dimension called manifolds. A hallmark of abstract mathematics is that the generality of concepts allows them to be applied to many apparently diverse situations. A manifold can describe a physical object, like the two-dimensional surface of an asteroid, or the space of all configurations of a robotic arm. Moving away from physical objects, any data set can be seen as a finite set of points in a manifold, in which case the dimension equals the number of quantities measured, for example height, weight, age, etc in a population. This project focuses on the study of "symmetry" of manifolds, which can be finite, like the one exhibited by a butterfly or a starfish, or infinite, such as the rotational symmetry of a round object like a planet. Symmetry leads to a notion of equivalence between points (for example the five tips of a starfish are equivalent), which naturally gives rise to a decomposition, or "Foliation", of the manifold into sub-manifolds called "leaves", which are sets of points equivalent to each other. Symmetry also yields the notion of "invariant functions", meaning functions constant on the leaves. The main goal of this project is to study the interplay between the algebraic study of invariant functions, and the geometric study of the "leaves". The PI will continue outreach to high school students, undergraduate research, graduate training, broadening participation activities, and organization of conferences and workshops.In more technical terms, this project will explore the interplay between the emerging field of singular Riemannian foliations, and the older fields of Invariant Theory and Submanifold Theory (especially isoparametric and minimal submanifolds). Proposed applications of Foliation Theory to Invariant Theory include providing new, "group-free" proofs of classical results, thus giving them a new perspective; and proving brand-new results, related for example to the Inverse Invariant Theory Problem. Proposed applications to submanifold geometry include the study of the index of minimal submanifolds, especially its relationship to the topology of the submanifold, as exemplified by the Marques-Neves-Schoen conjecture; and a new method of attack for the last remaining case in the century-old problem of classification of isoparametric submanifolds of spheres. This project is jointly funded by the Geometric Analysis and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微分几何是数学的一个分支,研究称为流形的任意维空间。抽象数学的一个特点是,概念的普遍性允许它们应用于许多明显不同的情况。流形可以描述物理对象,比如小行星的二维表面,或者机械臂的所有配置的空间。离开物理对象,任何数据集都可以被视为流形中的有限点集,在这种情况下,维度等于测量的量的数量,例如总体中的身高、体重、年龄等。这个项目的重点是研究流形的“对称性”,它可以是有限的,就像蝴蝶或海星展示的那样,也可以是无限的,比如像行星这样的圆形物体的旋转对称性。对称性导致了点之间的等价性的概念(例如,海星的五个尖端是相等的),这自然地产生了流形的分解,或者说是“叶”,形成称为“叶”的子流形,这些子流形是彼此相等的点的集合。对称性还产生了“不变函数”的概念,意思是叶子上的函数是恒定的。这个项目的主要目标是研究不变函数的代数研究和“叶”的几何研究之间的相互作用。PI将继续扩展到高中生,本科生研究,研究生培训,扩大参与活动,以及组织会议和工作坊。用更专业的术语,这个项目将探索新兴的奇异黎曼叶结构领域与不变理论和子流形理论(特别是等参子流形和极小子流形)的旧领域之间的相互作用。叶化理论在不变理论中的应用建议包括对经典结果提供新的、“无群”的证明,从而给予它们一个新的视角;以及证明全新的结果,例如与逆不变理论问题相关的结果。提出的对子流形几何的应用包括研究极小子流形的指数,特别是它与子流形的拓扑的关系,如Marques-Neves-Schoen猜想;以及对百年来球面等参子流形分类问题中最后剩余情况的一种新的攻击方法。该项目由几何分析和既定的激励竞争研究计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lifting isometries of orbit spaces
轨道空间的提升等距
- DOI:10.1112/blms.12514
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Mendes, Ricardo A. E.
- 通讯作者:Mendes, Ricardo A. E.
Virtual immersions and minimal hypersurfaces in compact symmetric spaces
紧凑对称空间中的虚拟沉浸和最小超曲面
- DOI:10.1007/s00526-020-01854-x
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Mendes, Ricardo A.;Radeschi, Marco
- 通讯作者:Radeschi, Marco
Maximality of Laplacian algebras, with applications to Invariant Theory
拉普拉斯代数的极大性及其在不变理论中的应用
- DOI:10.1007/s10231-022-01269-9
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mendes, Ricardo A.;Radeschi, Marco
- 通讯作者:Radeschi, Marco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Augusto Mendes其他文献
Ricardo Augusto Mendes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
- 批准号:
2348792 - 财政年份:2024
- 资助金额:
$ 17.64万 - 项目类别:
Standard Grant
Toward a scale invariant theory for the early Universe and elementary particles
早期宇宙和基本粒子的尺度不变理论
- 批准号:
23K03383 - 财政年份:2023
- 资助金额:
$ 17.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 17.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimization, Complexity, Algebra and Invariant Theory
最优化、复杂性、代数和不变理论
- 批准号:
RGPIN-2020-04599 - 财政年份:2022
- 资助金额:
$ 17.64万 - 项目类别:
Discovery Grants Program - Individual
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 17.64万 - 项目类别:
Continuing Grant
Optimization, Complexity, Algebra and Invariant Theory
最优化、复杂性、代数和不变理论
- 批准号:
RGPIN-2020-04599 - 财政年份:2021
- 资助金额:
$ 17.64万 - 项目类别:
Discovery Grants Program - Individual
Invariant Theory and Complexity Theory for Quiver Representations and Tensors
Quiver 表示和张量的不变理论和复杂性理论
- 批准号:
2147769 - 财政年份:2021
- 资助金额:
$ 17.64万 - 项目类别:
Standard Grant
CAREER: Singular Riemannian Foliations and Applications to Curvature and Invariant Theory
职业:奇异黎曼叶状结构及其在曲率和不变理论中的应用
- 批准号:
2042303 - 财政年份:2021
- 资助金额:
$ 17.64万 - 项目类别:
Continuing Grant
Arithmetic Invariant Theory for Rings
环的算术不变理论
- 批准号:
535001-2019 - 财政年份:2021
- 资助金额:
$ 17.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral