Category I: Anvil - A National Composable Advanced Computational Resource for the Future of Science and Engineering

第一类:Anvil - 面向科学与工程未来的国家级可组合高级计算资源

基本信息

  • 批准号:
    2005632
  • 负责人:
  • 金额:
    $ 995.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

As computing permeates nearly all fields of science and engineering, there is an exponential growth of computing needs from both the traditional computing-intensive domains and the emerging new and more diverse fields of research. The rise of machine learning and artificial intelligence applications has accelerated and broadened the use of computational resources from research in creating new and more environmentally friendly materials to improving medicine in our fight against deadly diseases. There are three main challenges to meeting this rapidly evolving landscape of national computational needs: a shortage of capacity, increasingly diverse applications, and computational literacy and training. This project aims to meet these challenges and transform the way computing is delivered by developing and deploying a composable advanced computing resource, Anvil, to the national research community to significantly increase both the computing capacity and accessibility. Anvil integrates a large-capacity high-performance computing (HPC) cluster with a comprehensive ecosystem of software, access interfaces, programming environments, and composable services to form a seamless environment able to support a broad range of current and future science and engineering applications. Through a carefully designed student training program and partnerships with regional and other universities, XSEDE, and Women in HPC programs, this project will develop computing competency in the next-generation workforce, and engage and train a broader audience including underrepresented students at minority-serving and EPSCoR (Established Program to Stimulate Competitive Research) institutions.Built with a forward-looking architecture with a high core count, and improved memory bandwidth and I/O, Anvil can effectively support traditional HPC with fast turnaround for high throughput, mid-scale computation jobs. Anvil consists of 1000 128-core computing nodes based on the next-generation AMD Epyc “Milan" architecture that can deliver a total peak performance of 5.3 Petaflops. Each node has 256 GB of memory, and a 100 gigabits/second bandwidth from the Mellanox HDR InfiniBand interconnect, allowing multiple jobs of up to 1024 cores to be run at full speed over the interconnect fabric. These nodes are complemented by 32 large-memory nodes with 1 TB of RAM each, and 16 Nvidia GPU nodes with 4 “Volta Next” GPUs per node. The GPU nodes are capable of 1.57 petaflops of single-precision performance to support machine learning and a wide range of current and future science and engineering applications. Anvil’s multiple tiers of storage systems include a long-term archive, persistent file and campaign storage, a 10 PB scratch file system, a 3 PB flash burst buffer, and object storage to support a variety of workflows and storage needs. Anvil will lower the barrier to entry to advanced computing CI by providing interactive computing and desktop environments that ease the transition for users from diverse domains new to HPC. By providing feature-rich interactive environments such as Open OnDemand and ThinLinc, users can rapidly become productive on Anvil through Linux and Windows desktops, or familiar tools through their browser (e.g., Jupyter, RStudio). Complex scientific software environments and application stacks will be supported via containers orchestrated within a powerful composable subsystem. Anvil supports cloud-bursting of computational workloads as well as use of public cloud machine learning platforms including GPU and FPGA accelerators and software tools to automate hyperparameter tuning and algorithm selection for exploratory ML research. An existing production-quality science gateway at Purdue will support XSEDE researchers to share their data and tools online and facilitate easy access to Anvil and other XSEDE resources in classroom instruction and training activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着计算几乎渗透到科学和工程的几乎所有领域,从传统的计算密集型域和新兴的新的,更多样化的研究领域都有计算需求的指数增长。机器学习和人工智能应用程序的兴起已经加速并扩大了从研究中的计算资源的使用,从而创造了新的,更环保的材料,以改善我们针对致命疾病的斗争中的医学。满足国家计算需求的这种快速发展的景观有三个主要挑战:容量短缺,越来越多样化的应用以及计算素养和培训。该项目旨在应对这些挑战,并通过开发和部署可组合的高级计算资源Anvil来改变计算方式,以显着提高计算能力和可访问性。 Anvil将大容量的高性能计算(HPC)集群与软件,访问界面,编程环境和合并服务的全面生态系统相结合,以形成一个无缝的环境,能够支持一系列当前和未来的科学和工程应用。通过精心设计的学生培训计划以及与HPC计划中的区域和其他大学,XSEDE和妇女的合作关系,该项目将在下一代员工中发展计算能力,并吸引和培训更广泛的受众群体,包括少数派服务和EPSCOR的代表性不足的学生(既有企业的企业群体,都可以刺激了竞争力的研究机构。 I/O,Anvil可以有效地支持传统的HPC,并通过快速的周转,用于高吞吐量,中期计算作业。 Anvil由基于下一代AMD EPYC“ Milan”体系结构的1000 128核计算节点组成,可提供5.3 PETAFLOPS的总峰值性能。每个节点都有256 GB的内存,并且来自Mellanox HDR Infiniband Interonnect的100 GB/第二个带宽,可以在互连面料上全速运行多达1024个内核的多个作业。这些节点由32个大型内存节点完成,每个节点为1 tb的RAM,每个节点为4个“ volta next” gpus的16个NVIDIA GPU节点。 GPU节点能够具有1.57 Petaflops的单精度性能,以支持机器学习以及广泛的当前和未来的科学和工程应用。 Anvil的多个存储系统包括长期存档,持久文件和广告系列存储,10 pb刮擦文件系统,3 pb闪存爆发缓冲区以及对象存储,以支持各种工作流程和存储需求。 Anvil将通过提供交互式计算和桌面环境来减轻进入高级计算CI的进入障碍,从而减轻来自HPC新手领域的用户的过渡。通过提供功能丰富的交互式环境,例如开放式Ondemand和Thinlinc,用户可以通过Linux和Windows台式机上的砧上迅速在Anvil上发挥作用,或者通过其浏览器(例如Jupyter,Rstudio)熟悉的工具。复杂的科学软件环境和应用程序堆栈将通过在功能强大的组合子系统中精心策划的容器来支持。 Anvil支持计算工作负载的云爆炸,并使用公共云机器学习平台,包括GPU和FPGA加速器以及软件工具,以自动化超参数调整和算法选择,以进行探索性ML研究。普渡大学现有的生产质量科学门户将支持XSEDE研究人员在线分享他们的数据和工具,并准备在课堂指导和培训活动中轻松访问Anvil和其他XSEDE资源。这项奖项反映了NSF的法定任务,并被认为是通过基金会的知识绩效和更广泛影响的评估来审查的审查标准,以评估来获得珍贵的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding Factors that Influence Research Computing and Data Careers
了解影响研究计算和数据职业的因素
Defining Performance of Scientific Application Workloads on the AMD Milan Platform
定义 AMD Milan 平台上科学应用程序工作负载的性能
  • DOI:
    10.1145/3437359.3465596
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu, Tsai-Wei;Lien Harrell, Stephen;Lentner, Geoffrey;Younts, Alex;Weekly, Sam;Mertes, Zoey;Maji, Amiya;Smith, Preston;Zhu, Xiao
  • 通讯作者:
    Zhu, Xiao
Cyberinfrastructure for sustainability sciences
可持续科学的网络基础设施
  • DOI:
    10.1088/1748-9326/acd9dd
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Song, Carol X.;Merwade, Venkatesh;Wang, Shaowen;Witt, Michael;Kumar, Vipin;Irwin, Elena;Zhao, Lan;Walton, Amy
  • 通讯作者:
    Walton, Amy
Anvil - System Architecture and Experiences from Deployment and Early User Operations
Anvil - 系统架构以及部署和早期用户运营的经验
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaohui Carol Song其他文献

Xiaohui Carol Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaohui Carol Song', 18)}}的其他基金

CC* Networking Infrastructure: Integrating Big Data Instrumentation into Campus Cyberinfrastructure
CC* 网络基础设施:将大数据仪器集成到校园网络基础设施中
  • 批准号:
    1827184
  • 财政年份:
    2018
  • 资助金额:
    $ 995.22万
  • 项目类别:
    Standard Grant
Framework: Data: HDR: Extensible Geospatial Data Framework towards FAIR (Findable, Accessible, Interoperable, Reusable) Science
框架:数据:HDR:面向 FAIR(可查找、可访问、可互操作、可重用)科学的可扩展地理空间数据框架
  • 批准号:
    1835822
  • 财政年份:
    2018
  • 资助金额:
    $ 995.22万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: Integrating Geospatial Capabilities into HUBzero
CIF21 DIBB:将地理空间功能集成到 HUBzero 中
  • 批准号:
    1261727
  • 财政年份:
    2013
  • 资助金额:
    $ 995.22万
  • 项目类别:
    Cooperative Agreement
INTEROP: Developing Community-based DRought Information Network Protocols and Tools for Multidisciplinary Regional Scale Applications (DRInet)
INTEROP:开发基于社区的干旱信息网络协议和工具,用于多学科区域规模应用(DRInet)
  • 批准号:
    0753116
  • 财政年份:
    2008
  • 资助金额:
    $ 995.22万
  • 项目类别:
    Continuing Grant
SCI: TeraGrid Resource Partners
SCI:TeraGrid 资源合作伙伴
  • 批准号:
    0503992
  • 财政年份:
    2005
  • 资助金额:
    $ 995.22万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: An Adaptive Remote-Data Access System For Wireless Handheld Devices
SBIR 第一阶段:无线手持设备的自适应远程数据访问系统
  • 批准号:
    0231708
  • 财政年份:
    2003
  • 资助金额:
    $ 995.22万
  • 项目类别:
    Standard Grant

相似国自然基金

苹果砧木miRLn47砧穗间运输调控耐盐性机制研究
  • 批准号:
    32302494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
苹果砧穗间可移动MpABF3调控耐旱性的分子机制
  • 批准号:
    32302478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
梨小肽SUBPEP砧穗间长距离运输结合受体蛋白调控机理研究
  • 批准号:
    32272658
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
刺槐成熟接穗连续幼砧继代嫁接的幼化机制研究
  • 批准号:
    32171769
  • 批准年份:
    2021
  • 资助金额:
    60.00 万元
  • 项目类别:
    面上项目
苹果砧穗间长距离传递基因MpAL1对干旱胁迫的调控机制研究
  • 批准号:
    32102311
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AnVIL Clinical Environment for Innovation and Translation (ACE-IT)
AnVIL 创新与转化临床环境 (ACE-IT)
  • 批准号:
    10747551
  • 财政年份:
    2023
  • 资助金额:
    $ 995.22万
  • 项目类别:
Implementing the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL)
实施基因组数据科学分析、可视化和信息学实验室空间 (AnVIL)
  • 批准号:
    9789931
  • 财政年份:
    2018
  • 资助金额:
    $ 995.22万
  • 项目类别:
Implementing the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL)
实施基因组数据科学分析、可视化和信息学实验室空间 (AnVIL)
  • 批准号:
    10220581
  • 财政年份:
    2018
  • 资助金额:
    $ 995.22万
  • 项目类别:
Implementing the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL)
实施基因组数据科学分析、可视化和信息学实验室空间 (AnVIL)
  • 批准号:
    10405959
  • 财政年份:
    2018
  • 资助金额:
    $ 995.22万
  • 项目类别:
The AnVIL Data Ecosystem
AnVIL 数据生态系统
  • 批准号:
    10231107
  • 财政年份:
    2018
  • 资助金额:
    $ 995.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了