Quasilinear Dissipation of Turbulently-Generated Kinetic Alfven Waves: Kinetics of Ion Heating and Solar Wind Acceleration in Coronal Holes
湍流产生的动能阿尔芬波的拟线性耗散:冕洞中离子加热和太阳风加速的动力学
基本信息
- 批准号:2005982
- 负责人:
- 金额:$ 55.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The solar wind defines the Earth's plasma environment, mediating all solar disturbances and space weather effects. A full microscale understanding of the processes that operate in the flow will aid investigations in these areas. This 3-year research study of ion heating by turbulently generated kinetic Alfven waves (KAWs) will address the long-standing puzzle of how the solar wind is heated and accelerated through the dissipation of Alfvenic plasma turbulence. The ion energization expected from this mechanism should finally provide a kinetic basis for detailed solar wind models that require accurate, physically motivated heating rates. It will also provide a physical explanation for the preferential heating of heavy ions in the solar wind. Ultimately, this 3-year project will yield a quantitative kinetic model of the multi-ion accelerated and heated solar wind as it emerges from a coronal hole. Furthermore, it will provide valuable insight on the many other phenomena in the plasma universe that involve turbulence, such as solar and stellar flares, supernova remnants, accretion discs of compact objects, as well as interstellar, intergalactic and intra-cluster flows. Additionally, the project team members are active participants in the educational efforts at the UNH, and the support provided by this grant will enable continuation of their productive research interactions with graduate and undergraduate students.It is widely accepted that the solar wind is driven by ion heating due to the dissipation of plasma turbulence in the solar corona. The kinetic details of this heating process determine the microscale properties of the resulting wind, but such details are not presently known. Observationally, the heating must act preferentially on the perpendicular ion motion, and act more strongly on heavy ions than on protons. Simulations of plasma turbulence can produce these results but do not clearly pinpoint the kinetic mechanism. Recently, a picture of collisionless turbulence has emerged that describes the small-scale fluctuations in terms of KAWs. These fluctuations are highly oblique, compressive, and elliptically polarized. Although these turbulent fluctuations are not waves in the standard sense, their polarization and propagation properties may still be obtained from a plasma dispersion relation. In the past, the project team has shown that a plausible turbulent spectrum of KAWs will heat ions in the perpendicular direction through the quasilinear (QL) cyclotron resonance, and that this heating can dominate the effect of the seemingly stronger Landau resonance in circumstances relevant to the solar wind. During this 3-year project, the team will carry out a thorough investigation of this QL interaction in the corona and solar wind, adding more physical details to their initial example and investigating the effects of different plasma and turbulent properties. In each case, the team will follow the self-consistent evolution of the ion distributions and fluctuation dispersion relations obtained from our Arbitrary Linear Plasma Solver (ALPS). The investigators will explore the effects of different plasma beta: different assumptions on the turbulent spectral shape; imbalanced turbulent spectra; intermittency; and, resonance broadening. They will study the preferential effects on heavy ions throughout these explorations. The results of spatially homogeneous studies will be incorporated into their inhomogeneous kinetic guiding-center coronal hole model, which derives radially dependent ion distributions when the turbulent heating is coupled with global coronal forces. The research and EPO agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳风定义了地球的等离子体环境,调解了所有的太阳扰动和空间天气效应。 一个完整的微观尺度的理解,在流程中操作的过程将有助于在这些领域的调查。 这项为期3年的研究通过强烈产生的动力学阿尔芬波(KAWs)加热离子,将解决长期存在的难题,即太阳风如何通过阿尔芬等离子体湍流的消散而被加热和加速。 从这个机制预期的离子流最终应该提供一个详细的太阳风模型,需要准确的,物理驱动的加热速率的动力学基础。 它还将为太阳风中重离子的优先加热提供物理解释。 最终,这个为期3年的项目将产生一个定量动力学模型的多离子加速和加热的太阳风,因为它出现在一个日冕洞。 此外,它还将提供关于等离子体宇宙中涉及湍流的许多其他现象的宝贵见解,如太阳和恒星耀斑、超新星遗迹、致密物体的吸积盘以及星际、星系间和星系团内流动。 此外,项目组成员积极参与联合国大学的教育工作,这笔赠款提供的支持将使他们能够继续与研究生和本科生进行富有成效的研究互动。人们普遍认为,太阳风是由离子加热驱动的,这是由于日冕中等离子体湍流的消散。这种加热过程的动力学细节决定了所产生的风的微尺度特性,但这些细节目前还不清楚。 从观测上看,加热必须优先作用于垂直运动的离子,并且对重离子的作用比对质子的作用更强。 等离子体湍流的模拟可以产生这些结果,但没有明确指出动力学机制。 最近,出现了一幅无碰撞湍流的图像,它描述了KAWs的小尺度波动。 这些波动是高度倾斜的、压缩的和椭圆偏振的。 虽然这些湍流波动不是标准意义上的波,但它们的偏振和传播特性仍然可以从等离子体色散关系获得。 在过去,项目团队已经表明,KAWs的合理湍流谱将通过准线性(QL)回旋共振在垂直方向上加热离子,并且这种加热可以在与太阳风相关的情况下主导看似更强的朗道共振的效果。 在这个为期3年的项目中,该团队将对日冕和太阳风中的这种QL相互作用进行彻底的研究,为他们最初的例子添加更多的物理细节,并研究不同等离子体和湍流特性的影响。 在每种情况下,团队将遵循从我们的任意线性等离子体解算器(ALPS)获得的离子分布和波动色散关系的自洽演化。 研究人员将探索不同等离子体β的影响:对湍流光谱形状的不同假设;不平衡的湍流光谱;不稳定性;以及共振加宽。 他们将在这些探索中研究重离子的优先效应。 空间均匀的研究结果将被纳入他们的非均匀动力学引导中心冕洞模型,该模型推导出径向依赖的离子分布时,湍流加热与全球日冕力耦合。 该项目的研究和EPO议程支持AGS部门在发现、学习、多样性和跨学科研究方面的战略目标。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-dimensional Hybrid Simulation Results of a Variable Magnetic Helicity Signature at Proton Kinetic Scales
- DOI:10.3847/1538-4357/ac3bbc
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:B. Vasquez;S. Markovskii;Charles W. Smith
- 通讯作者:B. Vasquez;S. Markovskii;Charles W. Smith
Observational Analysis and Numerical Modeling of the Solar Wind Fluctuation Spectra during Intervals of Plasma Instability
等离子体不稳定期间太阳风脉动光谱的观测分析和数值模拟
- DOI:10.3847/1538-4357/ac9f42
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Markovskii, S. A.;Vasquez, Bernard J.
- 通讯作者:Vasquez, Bernard J.
Turbulence Driving by Interstellar Pickup Ions in the Outer Solar Wind
- DOI:10.3847/1538-4357/acb337
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:P. Isenberg;B. Vasquez;Charles W. Smith
- 通讯作者:P. Isenberg;B. Vasquez;Charles W. Smith
Four-dimensional Frequency–Wavenumber Power Spectrum of a Strong Turbulence Obtained from Hybrid Kinetic Simulations
- DOI:10.3847/1538-4357/abb99f
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:S. Markovskii;B. Vasquez
- 通讯作者:S. Markovskii;B. Vasquez
Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind
质子温度各向异性导致太阳风不稳定的条件
- DOI:10.3847/1538-4357/ac982f
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Opie, Simon;Verscharen, Daniel;Chen, Christopher H. K.;Owen, Christopher J.;Isenberg, Philip A.
- 通讯作者:Isenberg, Philip A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Isenberg其他文献
Philip Isenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Isenberg', 18)}}的其他基金
SHINE: Self-Consistent Resonant-Cyclotron Heating of Protons and Alpha Particles in the Solar Wind and Solar Corona
SHINE:太阳风和日冕中质子和阿尔法粒子的自洽共振回旋加热
- 批准号:
1358103 - 财政年份:2014
- 资助金额:
$ 55.3万 - 项目类别:
Continuing Grant
SHINE: Kinetic Heating of Coronal Hole Ions for Generation of the Solar Wind by Imbalanced Turbulence
SHINE:冕洞离子的动力学加热,通过不平衡湍流产生太阳风
- 批准号:
0962506 - 财政年份:2010
- 资助金额:
$ 55.3万 - 项目类别:
Continuing Grant
Studies of Wave-Particle Interactions for Interstellar Pickup Ions in the Solar Wind
太阳风中星际拾取离子的波粒相互作用研究
- 批准号:
0635863 - 财政年份:2007
- 资助金额:
$ 55.3万 - 项目类别:
Continuing Grant
NSWP: Kinetic Turbulence-Driven Solar Wind Model Through the Resonant Cyclotron Interaction - Protons and Alpha Particles
NSWP:通过共振回旋加速器相互作用的动力学湍流驱动的太阳风模型 - 质子和阿尔法粒子
- 批准号:
0719738 - 财政年份:2007
- 资助金额:
$ 55.3万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Standard Grant
Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
- 批准号:
EP/X015351/1 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Research Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247398 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Standard Grant
Harnessing Magnonic Nonreciprocity Through Dissipation Engineering
通过耗散工程利用磁非互易性
- 批准号:
2337713 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Standard Grant
Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
- 批准号:
EP/X015327/1 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Research Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247395 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Standard Grant
Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
- 批准号:
EP/X015335/1 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Research Grant
AGS-FIRP Track 2: Understanding Vertical Variation of Energy Dissipation near the Surface for Solving the Mystery of the Observed Surface Energy Imbalance
AGS-FIRP 轨道 2:了解地表附近能量耗散的垂直变化,以解决观测到的地表能量不平衡之谜
- 批准号:
2231229 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Standard Grant
CAREER: Dissipation Mechanisms and Damping in Smart Elastomers with Intermolecular Organization
职业:具有分子间组织的智能弹性体的耗散机制和阻尼
- 批准号:
2238035 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Standard Grant
Energy dissipation characterisation in dynamic brittle fracture
动态脆性断裂的能量耗散表征
- 批准号:
DP230100749 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Discovery Projects