Magnetic-field Control of Ionic Bonds on Polar Surfaces by Design

通过设计对极性表面上的离子键进行磁场控制

基本信息

  • 批准号:
    2006028
  • 负责人:
  • 金额:
    $ 79.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Understanding, predicting, and controlling the interactions between nanomaterials and biological entities are critical for the development of nanostructures for nanomedicine, facilitating more efficient diagnoses and treatments of diseases. The main goal of this research is to control by magnetic field the nanoscale interactions between the polar ferroelectric surfaces and charged biomolecules by designing and creating hybrid magnetic-ferroelectric nanostructures. These hybrid nanostructures integrate ferroelectric nanomaterials, a class of nanomaterials possessing permanent and controllable electric dipoles (hence are “polar”), together with magnetic materials. This research will clarify how the interactions between the materials are determined by the size and geometry of the nanostructures as well as magnetic field strength. This will enable the rational design of hybrid magnetic-ferroelectric nanostructures for biological and medical applications, such as remotely-controlled targeted release of drug molecules for cancer treatment, deep brain stimulation for treating Parkinson’s disease, and enhancing cell growth for tissue regeneration. The project provides a broad education experience to all students, including interdisciplinary research training, and participation in an outreach program focusing on the professional development of high-school science teachers. The outreach activities include recruiting teachers to perform project-related research in the investigator’s labs and organizing a two-day workshop “Nano Connections”. This workshop aims to introduce the participants to the advanced research topics and applications of nanomaterials and nanotechnology and develop plans for related classroom activities. Science teachers from rural school districts and underrepresented groups will be actively recruited through collaboration with the Wisconsin Society of Science Teachers. Graduate students will be involved as the mentors of the teachers to facilitate a mutual learning experience. Interactions between nanomaterials and biological entities are of fundamental importance for many biological and medical applications of nanostructures such as biosensing, drug delivery, brain stimulation, and tissue regeneration. The main goal of this research is to achieve a magnetic-field control of single-molecule-scale interactions between the polar ferroelectric surfaces and charged biomolecules by designing and creating hybrid magnetic-ferroelectric nanostructures. Such hybrid nanostructures integrate ferroelectric nanomaterials, a class of nanomaterials possessing permanent and controllable electric dipoles, with magnetic materials. To date, the ferroelectric-biomolecule interactions remain largely unexplored at the single-molecule scale. A team with complementary expertise will perform closed-loop research activities including (1) computational design of the hybrid nanostructures for down-selecting their size and geometry; (2) computation-guided nanostructure fabrication; and (3) nanoscale characterization of both the surface polarization and ferroelectric-biomolecule bonding strength to provide a feedback to computation. This research will advance the understanding of the nanoscale electrostatic interactions between inorganic polar nanomaterials and organic biomolecules and will benefit society by enabling the rational design of hybrid magnetic-ferroelectric nanostructures for addressing important societal needs in medical diagnosis and treatment. The project provides excellent interdisciplinary education and training opportunities for all students and involves the students in a high-school outreach program. The goal of the outreach program is to provide unique professional development experiences for high-school science teachers, notably those from rural school districts and underrepresented groups. The outreach activities include recruiting teachers to perform project-related research in the PIs’ labs and organizing a two-day workshop “Nano Connections”. This workshop aims to introduce the participants to the advanced research topics and applications of nanomaterials and nanotechnology and develop plans for related classroom activities. The PIs will collaborate with Wisconsin Society of Science Teachers on teacher recruitment, program assessment, and post-program communication to facilitate the implementation of classroom activities. Successful demonstrations will be presented by the teachers at education conferences and adapted by the PIs for other university-wide outreach events. .This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解、预测和控制纳米材料与生物实体之间的相互作用对于纳米医学纳米结构的发展至关重要,有助于更有效地诊断和治疗疾病。本研究的主要目标是通过设计和制造混合磁性-铁电纳米结构,通过磁场控制极性铁电表面和带电生物分子之间的纳米级相互作用。这些混合纳米结构集成了铁电纳米材料,一类具有永久和可控电偶极子(因此是“极性”)的纳米材料,以及磁性材料。这项研究将阐明材料之间的相互作用是如何由纳米结构的尺寸和几何形状以及磁场强度决定的。 这将使混合磁性-铁电纳米结构的合理设计能够用于生物和医学应用,例如用于癌症治疗的药物分子的远程控制靶向释放,用于治疗帕金森病的深部脑刺激,以及用于组织再生的增强细胞生长。该项目为所有学生提供了广泛的教育经验,包括跨学科研究培训,并参与了一个专注于高中科学教师专业发展的外展计划。推广活动包括招聘教师在研究人员的实验室进行与项目有关的研究,并组织为期两天的讲习班“纳米连接”。本工作坊旨在向参加者介绍纳米材料和纳米技术的前沿研究课题和应用,并制定相关的课堂活动计划。来自农村学区和代表性不足的群体的科学教师将通过与威斯康星州科学教师协会的合作积极招募。研究生将作为教师的导师参与,以促进相互学习的经验。 纳米材料和生物实体之间的相互作用对于纳米结构的许多生物和医学应用(例如生物传感、药物递送、脑刺激和组织再生)具有根本重要性。本研究的主要目标是通过设计和创建混合磁性铁电纳米结构来实现极性铁电表面和带电生物分子之间的单分子尺度相互作用的磁场控制。这种混合纳米结构将铁电纳米材料(一类具有永久和可控电偶极子的纳米材料)与磁性材料集成在一起。到目前为止,铁电生物分子相互作用仍然在很大程度上在单分子尺度上未被探索。一个具有互补专业知识的团队将进行闭环研究活动,包括(1)混合纳米结构的计算设计,以向下选择其尺寸和几何形状;(2)计算引导的纳米结构制造;和(3)表面极化和铁电生物分子结合强度的纳米级表征,为计算提供反馈。这项研究将推进对无机极性纳米材料和有机生物分子之间纳米级静电相互作用的理解,并通过合理设计混合磁性-铁电纳米结构来满足医疗诊断和治疗中的重要社会需求,从而造福社会。该项目为所有学生提供优秀的跨学科教育和培训机会,并让学生参与高中外展计划。推广计划的目标是为高中科学教师提供独特的专业发展经验,特别是那些来自农村学区和代表性不足的群体。外展活动包括招聘教师在私人研究所的实验室进行与项目有关的研究,以及举办为期两天的工作坊“纳米连接”。本工作坊旨在向参加者介绍纳米材料和纳米技术的前沿研究课题和应用,并制定相关的课堂活动计划。PI将与威斯康星州科学教师协会在教师招聘,项目评估和项目后沟通方面进行合作,以促进课堂活动的实施。成功的示范将由教师在教育会议上提出,并由PI调整为其他大学范围内的外展活动。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acoustic attenuation in magnetic insulator films: effects of magnon polaron formation
磁绝缘体薄膜中的声衰减:磁振子极化子形成的影响
Excitation and detection of coherent sub-terahertz magnons in ferromagnetic and antiferromagnetic heterostructures
  • DOI:
    10.1038/s41524-022-00851-2
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    S. Zhuang;Jiangsheng Hu
  • 通讯作者:
    S. Zhuang;Jiangsheng Hu
Role of polarization-photon coupling in ultrafast terahertz excitation of ferroelectrics
偏振光子耦合在铁电体超快太赫兹激发中的作用
  • DOI:
    10.1103/physrevb.106.l140302
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhuang, Shihao;Hu, Jia-Mian
  • 通讯作者:
    Hu, Jia-Mian
Synthesis of a New Ferroelectric Relaxor Based on a Combination of Antiferroelectric and Paraelectric Systems
基于反铁电和顺电系统组合的新型铁电弛豫剂的合成
  • DOI:
    10.1021/acsami.2c02281
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Chun-Hao Ma;Yi-Kai Liao;Yunzhe Zheng;Shihao Zhuang;Si-Cheng Lu;Pao-Wen Shao;Jia-Wei Chen;Yu-Hong Lai;Pu Yu;Jia Mian Hu;Rong Huang;Ying-Hao Chu
  • 通讯作者:
    Ying-Hao Chu
Geometric Control of Domain Structure Stability in Ferroelectric Nanotubes
  • DOI:
    10.1002/aelm.202200132
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Aiden Ross;S. Zhuang;Mojue Zhang;Jiamian Hu
  • 通讯作者:
    Aiden Ross;S. Zhuang;Mojue Zhang;Jiamian Hu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiamian Hu其他文献

Multiferroic magnetoelectric composite nanostructures
多铁性磁电复合纳米结构
  • DOI:
    10.1038/asiamat.2010.32
  • 发表时间:
    2010-04-22
  • 期刊:
  • 影响因子:
    8.300
  • 作者:
    Yao Wang;Jiamian Hu;Yuanhua Lin;Ce-Wen Nan
  • 通讯作者:
    Ce-Wen Nan
Interdiffusion across solid electrolyte-electrode interface
固体电解质-电极界面的相互扩散
  • DOI:
    10.1063/1.4879835
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jiamian Hu;L. Liang;Yanzhou Ji;L. Hong;K. Gerdes;Long
  • 通讯作者:
    Long
HSC3D: A Python package to quantify three‐dimensional habitat structural complexity
HSC3D:量化三维栖息地结构复杂性的 Python 包
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Yi Gu;Jiamian Hu;Kai Han;Jackson W. T. Lau;Gray A. Williams
  • 通讯作者:
    Gray A. Williams
Ultrafast magnetoacoustics in ferromagnetic and antiferromagnetic thin-film heterostructures
铁磁和反铁磁薄膜异质结构中的超快磁声学
  • DOI:
    10.1117/12.2647481
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    S. Zhuang;Jiamian Hu
  • 通讯作者:
    Jiamian Hu

Jiamian Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiamian Hu', 18)}}的其他基金

CAREER: Hidden Topological Polar Phases Created by Ultrafast Acoustic Excitation
职业:超快声激励产生的隐藏拓扑极性相位
  • 批准号:
    2237884
  • 财政年份:
    2023
  • 资助金额:
    $ 79.64万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
  • 批准号:
    12373051
  • 批准年份:
    2023
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于太赫兹光谱近场成像技术的应力场测量方法
  • 批准号:
    11572217
  • 批准年份:
    2015
  • 资助金额:
    120.0 万元
  • 项目类别:
    面上项目
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
个性化近场头相关传输函数的测量与快速定制
  • 批准号:
    11104082
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
通用声场空间信息捡拾与重放方法的研究
  • 批准号:
    11174087
  • 批准年份:
    2011
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
飞秒双色场下分子的三维无场准直动力学研究
  • 批准号:
    11004078
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
  • 批准号:
    50876120
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

WIRELESS MAGNETO-MECHANICAL CONTROL OF NEURAL ACTIVITY MEDIATED BY MAGNETIC NANODISCS
磁性纳米圆盘介导的神经活动的无线磁机械控制
  • 批准号:
    10644156
  • 财政年份:
    2022
  • 资助金额:
    $ 79.64万
  • 项目类别:
Longitudinal Magnetic Field Effect in REBCO Tapes Investigated by Oxygen deficiency Control
通过缺氧控制研究 REBCO 磁带中的纵向磁场效应
  • 批准号:
    21K14192
  • 财政年份:
    2021
  • 资助金额:
    $ 79.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel Cell Function Control Using Plasma Selective Transport and Radical Reaction Delay under Tesla-class Strong Magnetic Field
特斯拉级强磁场下利用等离子体选择性传输和自由基反应延迟控制新型细胞功能
  • 批准号:
    21K18613
  • 财政年份:
    2021
  • 资助金额:
    $ 79.64万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Enhancing the spatial control of non-invasive brain stimulation by magnetic temporal interference
通过磁时间干扰增强非侵入性脑刺激的空间控制
  • 批准号:
    10316652
  • 财政年份:
    2021
  • 资助金额:
    $ 79.64万
  • 项目类别:
Development of localized mode control method using external magnetic field
利用外部磁场的局部模式控制方法的开发
  • 批准号:
    20K05290
  • 财政年份:
    2020
  • 资助金额:
    $ 79.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of electron heating mechanism during magnetic reconnection in the presence of high guide field and development of its control technique
高导场磁重联过程中电子加热机制的阐明及其控制技术的发展
  • 批准号:
    20H01879
  • 财政年份:
    2020
  • 资助金额:
    $ 79.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a sub-picometer dilatometer and its application to the research of novel superconducting phases under a precise control of the magnetic-field orientation
亚皮米膨胀计的研制及其在磁场方向精确控制下新型超导相研究中的应用
  • 批准号:
    20K20893
  • 财政年份:
    2020
  • 资助金额:
    $ 79.64万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Magnetic field control system for hybrid ultracold atoms apparatus
混合超冷原子装置磁场控制系统
  • 批准号:
    554011-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 79.64万
  • 项目类别:
    University Undergraduate Student Research Awards
Control of the Atomic Order of Magnetic Materials by Magnetic-field-induced Enhancement of the Reaction
通过磁场诱导的反应增强控制磁性材料的原子顺序
  • 批准号:
    20K15016
  • 财政年份:
    2020
  • 资助金额:
    $ 79.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Texture control of nonmagnetic ceramic film by aerosol deposition with magnetic field
磁场气溶胶沉积非磁性陶瓷薄膜的织构控制
  • 批准号:
    20K05084
  • 财政年份:
    2020
  • 资助金额:
    $ 79.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了