Computational Algebra and Applications
计算代数及其应用
基本信息
- 批准号:2006410
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many real world problems have a significant mathematical component. This project uses computational algebra to attack such problems. The main themes are: (1) Data Analysis, (2) Graphics, visualization, geometric modeling, (3) Computer science and computational complexity. A main problem in Data Analysis is to extract meaning from a massive dataset: imagine a dense, cloud of moving points. One approach is to freeze the cloud at a moment in time, and then increase the size of the individual points until nearby groups coalesce. Topological Data Analysis uses sophisticated mathematical tools to study the problem, and has led to insights into visual cortex activity, cancer pathology, and viral evolution. Companies from Boeing to Pixar use computer graphics and geometric modeling in applications ranging from analyzing turbulent fluid flow (air passage over a plane's wing) to accurate simulations and virtual reality. Key mathematical tools are splines, which provide a way of assembling a coherent big picture from local pieces. A third theme of this project is the modeling of dynamic processes, which often comes down to multiplying (massive) matrices many times (a matrix is a rectangular array of numbers). Finding efficient ways to multiply matrices is the topic of a subfield of Computer Science known as complexity theory. The project builds on prior work of the PI using algebraic objects known as permanents to provide insight into the problem. While at his previous position at Iowa State, the PI partnered with the Iowa State Veterans Center to provide extra math tutoring and support for student veterans, including an intensive day long Math Boot Camp at the start of each semester. In this project, he will develop similar programs at Auburn, with the first boot camp planned for fall 2021.The proposal revolves around a few main themes: permanents, polytopal parameterizations, and persistent homology, approximation theory and splines. The first group of topics is unified by homological methods and simplicial complexes, and the second by the interplay of algebra and discrete geometry; the objects of investigation are central players in computational mathematics. The problems share three traits: they are of importance in real world applications; subtle geometric or combinatorial data is reflected algebraically; and they are computationally tractable. The project will use the power of computational algebra to discover hidden connections between important applied invariants and geometry, combinatorics, and algebra. There are elegant characterizations of key invariants for applications (e.g. dimension of the spline space for a polytopal subdivision, equations for Wachspress parametric surfaces, the support locus of persistent homology) in terms of algebra. The concrete and computational aspect of the problems means they are ideal for involving graduate students and postdocs, and makes prospects for progress excellent. In addition to scientific advances, the project will result in development of specialized software, to be coauthored with students and integrated into the NSF-sponsored Macaulay2 software package.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多真实的世界问题都有重要的数学成分。 这个项目使用计算代数来解决这样的问题。主要主题是:(1)数据分析,(2)图形,可视化,几何建模,(3)计算机科学和计算复杂性。数据分析中的一个主要问题是从大量数据集中提取意义:想象一个密集的移动点云。一种方法是在某个时刻冻结云,然后增加单个点的大小,直到附近的组合并。拓扑数据分析使用复杂的数学工具来研究这个问题,并导致了对视觉皮层活动,癌症病理学和病毒进化的深入了解。从波音公司到皮克斯公司都在使用计算机图形和几何建模,其应用范围从分析湍流(飞机机翼上的空气通道)到精确模拟和虚拟现实。关键的数学工具是样条函数,它提供了一种从局部片段中组装出连贯的大画面的方法。这个项目的第三个主题是动态过程的建模,这通常归结为将(大量)矩阵乘以许多次(矩阵是一个矩形数组)。 寻找矩阵相乘的有效方法是计算机科学的一个子领域,称为复杂性理论。该项目建立在PI之前的工作基础上,使用被称为持久化的代数对象来提供对问题的洞察。而在他以前的位置在爱荷华州,PI与爱荷华州退伍军人中心合作,为学生退伍军人提供额外的数学辅导和支持,包括一个密集的一天长的数学靴子营在每个学期开始。在这个项目中,他将在奥本开发类似的程序,第一个靴子营地计划于2021年秋季。该提案围绕着几个主要主题:持久性,多面体参数化,持久性同源性,近似理论和样条。第一组主题是统一的同调方法和单纯复形,第二个由代数和离散几何的相互作用;调查的对象是计算数学的核心球员。这些问题有三个共同的特点:它们在真实的世界应用中具有重要性;微妙的几何或组合数据在代数上得到反映;它们在计算上易于处理。该项目将利用计算代数的力量来发现重要的应用不变量与几何,组合学和代数之间的隐藏联系。有优雅的特征的关键不变量的应用程序(例如维数的样条空间的多面体细分,方程的Wachspress参数曲面,支持轨迹的持续同源)在代数方面。这些问题的具体和计算方面意味着它们是研究生和博士后的理想选择,并且进展前景非常好。除了科学进步,该项目还将开发专门的软件,与学生共同创作并集成到NSF赞助的Macaulay 2软件包中。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algebraic Properties of Hermitian sums of squares, II
厄米平方和的代数性质,II
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Jennifer Brooks, Dusty Grundmeier
- 通讯作者:Jennifer Brooks, Dusty Grundmeier
Free resolutions and Lefschetz properties of some Artin Gorenstein rings of codimension four
余维四的一些 Artin Gorenstein 环的自由分辨率和 Lefschetz 性质
- DOI:10.1016/j.jsc.2023.102257
- 发表时间:2024
- 期刊:
- 影响因子:0.7
- 作者:Abdallah, Nancy;Schenck, Hal
- 通讯作者:Schenck, Hal
Nets in P^2 and Alexander Duality
P^2 中的篮网和亚历山大对偶
- DOI:10.1007/s00454-023-00504-1
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Abdallah, Nancy;Schenck, Hal
- 通讯作者:Schenck, Hal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Schenck其他文献
Syzygies, multigraded regularity and toric varieties
Syzygies、多级规则性和环面变化
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:1.8
- 作者:
M. Hering;Henry Schenck;Gregory G. Smith - 通讯作者:
Gregory G. Smith
High rank linear syzygies on low rank quadrics
低阶二次曲面上的高阶线性 syzygies
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Henry Schenck;M. Stillman - 通讯作者:
M. Stillman
Syzygies of projective toric varieties
射影复曲面簇的 Syzygies
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Henry Schenck;Gregory G. Smith - 通讯作者:
Gregory G. Smith
Betti tables forcing failure of the Weak Lefschetz Property
Betti 表迫使弱 Lefschetz 财产失败
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sean Grate;Henry Schenck - 通讯作者:
Henry Schenck
Henry Schenck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Schenck', 18)}}的其他基金
Symbolic Computation Meets Computational Geometry and Data Approximation
符号计算满足计算几何和数据逼近
- 批准号:
2048906 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Symbolic Computation Meets Computational Geometry and Data Approximation
符号计算满足计算几何和数据逼近
- 批准号:
1818646 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Surface modeling, approximation theory, and coding theory
表面建模、近似理论和编码理论
- 批准号:
0852223 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Surface modeling, approximation theory, and coding theory
表面建模、近似理论和编码理论
- 批准号:
0707667 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Symbolic Computations in Algebra and Topology
合作研究:代数和拓扑中的符号计算
- 批准号:
0311996 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9804628 - 财政年份:1998
- 资助金额:
$ 20万 - 项目类别:
Fellowship Award
相似海外基金
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Computational Differential and Difference Algebra, a special session at the Applications of Computer Algebra 2014 Conference, July 9 - 12, 2014.
计算微分和差分代数,2014 年计算机代数应用会议的特别会议,2014 年 7 月 9 日至 12 日。
- 批准号:
1413859 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Applications of computational algebra theory to differential geometry
计算代数理论在微分几何中的应用
- 批准号:
24540104 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to graph theory and computational complexity
代数在图论和计算复杂性中的应用
- 批准号:
238899-2001 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
NATO Advanced Study Institute on Computational Noncommutative Algebra and Applications; July 6-19, 2003; Tuscany, Italy
北约计算非交换代数及其应用高级研究所;
- 批准号:
0327088 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Computational Polyhedral Geometry: Applications in Algebra, Combinatorics, and Optimization
计算多面体几何:在代数、组合学和优化中的应用
- 批准号:
0309694 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant