Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
基本信息
- 批准号:238899-2011
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a constraint satisfaction problem (CSP), one must assign
values to variables that must satisfy various constraints; typical
real world examples include scheduling problems, database queries,
image-processing, and frequency assignment problems. In general,
determining whether a CSP admits a solution is an algorithmic
challenge, but it often happens in practice that the constraints
are of a very restricted form, allowing the use of efficient
methods to solve the CSP. Our long-term goal is to classify
precisely what kinds of restrictions lead to these tractable
CSP's. Our approach is based on an unexpected and fruitful
connection between CSP's and universal algebra that was uncovered
in the late 90's by P. Jeavons. In short, every family of
constraints is transformed into a mathematical object whose
algebraic properties somehow reflect the difficulty of solving the
CSP. This algebraic approach has led to some major breakthroughs
in the last 10 years in the study of the algorithmic complexity of
constraint satisfaction problems.
在约束满足问题(CSP)中,必须分配
值转换为必须满足各种约束的变量;典型的
真实的世界的例子包括调度问题,数据库查询,
图像处理和频率分配问题。总的来说,
确定CSP是否承认解决方案是一种算法,
挑战,但在实践中经常发生的是,
是一个非常有限的形式,允许使用有效的
解决CSP的方法。我们的长期目标是
究竟是什么样的限制导致了这些易处理的
CSP的。我们的方法是基于一个意想不到的和富有成效的
CSP和泛代数之间的联系
90年代末,P. Jeavons。总之,每个家庭
约束被转换为数学对象,
代数性质在某种程度上反映了解决这些问题的难度。
CSP。 这种代数方法带来了一些重大突破
在过去的10年里,在对算法复杂性的研究中,
约束满足问题
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Larose, Benoît其他文献
Larose, Benoît的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Larose, Benoît', 18)}}的其他基金
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
- 批准号:
238899-2006 - 财政年份:2010
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
- 批准号:
238899-2006 - 财政年份:2009
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
- 批准号:
238899-2006 - 财政年份:2008
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
- 批准号:
238899-2006 - 财政年份:2007
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
- 批准号:
238899-2006 - 财政年份:2006
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to graph theory and computational complexity
代数在图论和计算复杂性中的应用
- 批准号:
238899-2001 - 财政年份:2005
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
李代数的权表示
- 批准号:10371120
- 批准年份:2003
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
C*-algebras and its applications to classification of symbolic dynamical systems and study of orbit equivalence
C*-代数及其在符号动力系统分类和轨道等效研究中的应用
- 批准号:
15K04896 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Study on the structures and representations of infinite dimensional algebraic groups and Lie algebras, and applications to quasiperiodic structures
无限维代数群和李代数的结构和表示的研究,以及在准周期结构中的应用
- 批准号:
26400005 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
- 批准号:
238899-2011 - 财政年份:2011
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Study of Algorithms and Applications of Approximate Algebra
近似代数算法及应用研究
- 批准号:
19300001 - 财政年份:2007
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NATO Advanced Study Institute on Computational Noncommutative Algebra and Applications; July 6-19, 2003; Tuscany, Italy
北约计算非交换代数及其应用高级研究所;
- 批准号:
0327088 - 财政年份:2003
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Study of Algorithms and Applications of Approximate Algebra
近似代数算法及应用研究
- 批准号:
15300002 - 财政年份:2003
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
PARTIALLY ORDERED LINEAR ALGEBRA AND ITS APPLICATIONS
偏序线性代数及其应用
- 批准号:
6595213 - 财政年份:2002
- 资助金额:
$ 1.46万 - 项目类别:














{{item.name}}会员




