Applications of algebra to graph theory and computational complexity

代数在图论和计算复杂性中的应用

基本信息

  • 批准号:
    238899-2001
  • 负责人:
  • 金额:
    $ 0.51万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2005
  • 资助国家:
    加拿大
  • 起止时间:
    2005-01-01 至 2006-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Larose, Benoît其他文献

Larose, Benoît的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Larose, Benoît', 18)}}的其他基金

Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Neural dynamics and substrates of graphical knowledge
神经动力学和图形知识的基础
  • 批准号:
    10371663
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
Neural dynamics and substrates of graphical knowledge
神经动力学和图形知识的基础
  • 批准号:
    10487519
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
Prisms, a novel immersive learning platform to increase proficiency on bottleneck topics in secondary STEM
Prisms,一种新颖的沉浸式学习平台,可提高中学 STEM 瓶颈主题的熟练程度
  • 批准号:
    10252740
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
Unraveling the biological state of children with Environmental enteric dysfunction
揭示环境肠道功能障碍儿童的生物学状态
  • 批准号:
    10347356
  • 财政年份:
    2020
  • 资助金额:
    $ 0.51万
  • 项目类别:
Tilting theory of gentle algebras via surface combinatorics
基于表面组合的温和代数倾斜理论
  • 批准号:
    19K23401
  • 财政年份:
    2019
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
On the algebra and combinatorics of hyperplane arrangements
关于超平面排列的代数和组合学
  • 批准号:
    19K14493
  • 财政年份:
    2019
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mutation in derived categories and lattice theory of torsion classes and wide subcategories
派生范畴的突变以及挠率类和宽子类的格论
  • 批准号:
    17K14160
  • 财政年份:
    2017
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
  • 批准号:
    10493445
  • 财政年份:
    2017
  • 资助金额:
    $ 0.51万
  • 项目类别:
REU Site: Graph Theory, Combinatorics, and Abstract Algebra
REU 网站:图论、组合学和抽象代数
  • 批准号:
    1659221
  • 财政年份:
    2017
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
  • 批准号:
    10296507
  • 财政年份:
    2017
  • 资助金额:
    $ 0.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了