The Mathematical Theory of Black Holes with Matter
黑洞与物质的数学理论
基本信息
- 批准号:2006741
- 负责人:
- 金额:$ 11.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General Relativity is the fundamental physical theory of gravity and has a role of primary importance in our understanding of the universe. The key equation of General Relativity is due to Einstein, and black holes are its most surprising solutions. Black holes occupy a central stage in our understanding of gravity and tremendous progress in their research has been accomplished in the past decades. They are expected to form as a result of gravitational collapse and are surrounded by matter with which they interact. They are expected to radiate energy away in the form of gravitational waves (as detected by LIGO) and settle to a stationary state. Most mathematical models used in the study of such evolution of black holes do not consider any matter or energy field present in the spacetime: more precisely, they only assume the presence of the gravitational field. This is called the case of the vacuum Einstein equation. Even though the vacuum Einstein equation already presents many difficulties from the mathematical point of view, they hardly represent a complete picture about the physics involved. In order to obtain a realistic model for astrophysical black holes, matter fields should be added to the Einstein equation to model the surrounding of the black holes. This research is aimed at the study of black hole stability both for the vacuum Einstein equation and for the coupled equations with electromagnetic radiation. The plan of this research is to create a rigorous and systematic approach to understand the interaction of gravitational radiation with other matter fields present in astrophysical objects. We plan to consider the interaction between gravitation and electromagnetic fields, governed by the Maxwell equations, and develop a rigorous and clear understanding of their interactions. Our approach is based on the Teukolsky formalism. The Einstein-Maxwell equation has many features in common with the vacuum Einstein equation, but also presents new substantial difficulties related to the coupling of the gravitational and electromagnetic interactions. One of the difficulties is to identify gauge-invariant quantities which transport electromagnetic and gravitational radiation and derive the partial differential equations they satisfy. We then plan to be able to generalize the main ideas in dealing with those interactions to other matter systems, like Einstein-Vlasov, null dust or complex scalar, which are of fundamental importance in astrophysical systems. In general, in the case of the Einstein equation coupled with matter fields, we expect to obtain coupled hyperbolic PDEs with sources which interact one with another.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
广义相对论是引力的基本物理理论,在我们理解宇宙中起着至关重要的作用。广义相对论的关键方程是爱因斯坦提出的,而黑洞是它最令人惊讶的解。黑洞在我们对引力的理解中占据着中心地位,在过去的几十年里,黑洞的研究取得了巨大的进展。它们被认为是引力坍缩的结果,并被与它们相互作用的物质所包围。预计它们将以引力波的形式辐射能量(如LIGO所探测到的那样),并稳定在一个稳定的状态。大多数用于研究黑洞演化的数学模型都没有考虑时空中存在的任何物质或能量场:更准确地说,它们只假设引力场的存在。这就是所谓的真空爱因斯坦方程。尽管真空爱因斯坦方程已经从数学的角度提出了许多困难,但它们很难代表所涉及的物理学的全貌。为了得到一个真实的天体物理黑洞模型,需要在爱因斯坦方程中加入物质场来模拟黑洞的周围环境。本研究的目的是研究真空爱因斯坦方程和电磁辐射耦合方程的黑洞稳定性。 这项研究的计划是建立一个严格和系统的方法来理解引力辐射与天体物理对象中存在的其他物质场的相互作用。我们计划考虑引力和电磁场之间的相互作用,由麦克斯韦方程组,并制定一个严格和明确的理解他们之间的相互作用。我们的方法是基于Teukolsky形式主义。爱因斯坦-麦克斯韦方程与真空爱因斯坦方程有许多共同的特征,但也提出了新的实质性困难,涉及到引力和电磁相互作用的耦合。 其中一个困难是确定规范不变的量,传输电磁和引力辐射,并推导出它们满足的偏微分方程。然后,我们计划能够将处理这些相互作用的主要思想推广到其他物质系统,如Einstein-Vlasov,空尘或复杂标量,这些在天体物理系统中具有根本重要性。在一般情况下,在爱因斯坦方程与物质场耦合的情况下,我们希望获得耦合双曲偏微分方程与源相互作用another.This奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electromagnetic-gravitational perturbations of Kerr–Newman spacetime: The Teukolsky and Regge–Wheeler equations
- DOI:10.1142/s0219891622500011
- 发表时间:2020-02
- 期刊:
- 影响因子:0.7
- 作者:Elena Giorgi
- 通讯作者:Elena Giorgi
Numerical computation of second-order vacuum perturbations of Kerr black holes
- DOI:10.1103/physrevd.103.104018
- 发表时间:2020-10
- 期刊:
- 影响因子:5
- 作者:Justin L. Ripley;N. Loutrel;Elena Giorgi;F. Pretorius
- 通讯作者:Justin L. Ripley;N. Loutrel;Elena Giorgi;F. Pretorius
Second-order perturbations of Kerr black holes: Formalism and reconstruction of the first-order metric
- DOI:10.1103/physrevd.103.104017
- 发表时间:2021-05-18
- 期刊:
- 影响因子:5
- 作者:Loutrel, Nicholas;Ripley, Justin L.;Pretorius, Frans
- 通讯作者:Pretorius, Frans
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Giorgi其他文献
On the Local Extension of Killing Vector Fields in Electrovacuum Spacetimes
- DOI:
10.1007/s00023-019-00811-5 - 发表时间:
2019-05-16 - 期刊:
- 影响因子:1.300
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Boundedness and Decay for the Teukolsky System of Spin ±2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm \,2$$\end
- DOI:
10.1007/s00023-020-00923-3 - 发表时间:
2018-11 - 期刊:
- 影响因子:0
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Corrigendum to “Stable black holes: In vacuum and beyond”
“稳定黑洞:真空及真空之外”的勘误表
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.3
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Boundedness and Decay for the Teukolsky System of Spin $$\pm \,2$$ on Reissner–Nordström Spacetime: The Case $$|Q| \ll M$$
- DOI:
10.1007/s00023-020-00923-3 - 发表时间:
2020-06-24 - 期刊:
- 影响因子:1.300
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Stable black holes: in vacuum and beyond
- DOI:
10.1090/bull/1781 - 发表时间:
2022-09 - 期刊:
- 影响因子:1.3
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Elena Giorgi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Giorgi', 18)}}的其他基金
CAREER: Gravitational and Electromagnetic Waves on Black Holes
职业:黑洞上的引力波和电磁波
- 批准号:
2336118 - 财政年份:2024
- 资助金额:
$ 11.96万 - 项目类别:
Continuing Grant
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
- 批准号:
2306143 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
The Mathematical Theory of Black Holes with Matter
黑洞与物质的数学理论
- 批准号:
2128386 - 财政年份:2021
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Fundamental Fields, Black Holes and Perturbation Theory
基本场、黑洞和微扰理论
- 批准号:
2887309 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Studentship
Gravitational Wave Modeling Using Time-Domain Black Hole Perturbation Theory
使用时域黑洞微扰理论进行引力波建模
- 批准号:
2307236 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Continuing Grant
A mathematical approach to black hole perturbation theory
黑洞微扰理论的数学方法
- 批准号:
22K03641 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating Systemic Anti-Black Racism in the Nursing Profession Through a Critical Race Theory Lens
通过批判种族理论的视角调查护理行业中系统性的反黑人种族主义
- 批准号:
490918 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Studentship Programs
Holography, Black Holes, and Conformal Field Theory
全息术、黑洞和共形场论
- 批准号:
SAPIN-2020-00047 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Subatomic Physics Envelope - Individual
Black hole mechanics in effective field theory
有效场论中的黑洞力学
- 批准号:
2750638 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Studentship
Quantum theory, black holes and quantum gravity
量子理论、黑洞和量子引力
- 批准号:
RGPIN-2018-04090 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Discovery Grants Program - Individual
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
2201031 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
Exploring the Mental Well-being of Impoverished Black Women at Risk of Intimate Partner Violence: A Grounded Theory Study
探索面临亲密伴侣暴力风险的贫困黑人女性的心理健康:一项扎根理论研究
- 批准号:
475940 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Studentship Programs
Mapping the contours of teen dating violence: An ecologically-informed grounded theory approach to understanding romantic relationship development among Black girls
绘制青少年约会暴力的轮廓:一种基于生态的扎根理论方法来理解黑人女孩之间的浪漫关系发展
- 批准号:
10575060 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别: