On the Mathematical Theory of Black Holes
论黑洞的数学理论
基本信息
- 批准号:2201031
- 负责人:
- 金额:$ 47.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project deals with problems connected to the mathematical theory of black holes which, if solved, would contribute greatly to our understanding of these most fascinating physical objects of the physical Universe. The project will not only advance the science of black holes, but, by developing new mathematical techniques of relevance to other fields of mathematical physics, it promotes the progress of Mathematics and Science in the broadest possible sense. The Principal Investigator (PI) has a strong track record in targeting specific problems with broad appeal in various areas of Partial Differential Equations (PDE). In that sense, the problems considered as part of this project, though specific to the subject at hand, can also be reformulated in other important problems of mathematical physics. The project also fits well with respect to the long term goal of the PI to help create a vibrant scientific community working on mathematical problems connected to these areas. In particular, the project provides research training opportunities for graduate students. The project focuses on some of the main open problems concerning black holes such as rigidity, stability, and collapse, with special emphasis being given to the fundamental problem of the stability of the Kerr family. This is a precise, explicit, family of solutions to the Einstein vacuum equations, depending on two parameters (the mass and the angular momentum), on which our theoretical understanding of black holes is based. Thus, the problems mentioned above are not only deep from a mathematical point of view, they also have serious implications in Astrophysics. This is particularly true about the problem of stability, since if the Kerr family were to be found unstable, black holes would be nothing more than mathematical artifacts. The PI interprets these three related problems as mathematical "tests of reality" for black holes. All three problems require a deep understanding of the dynamics of the Einstein field equations in a strong gravitational field regime. This is a tall task which can only be achieved by a systematic mathematical analysis of the underlining structure of the problems, using new geometric PDE techniques. The resolution of these problems promotes the progress of Mathematics and Science beyond the subject matter of this particular project. Indeed, it is expected, as it often happened in the past, that some of the techniques developed in connection to these problems will be relevant to other important partial differential equations of mathematical physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及与黑洞的数学理论有关的问题,如果解决了这些问题,将极大地有助于我们理解物理宇宙中这些最迷人的物理对象。该项目不仅将推动黑洞科学的发展,而且通过开发与数学物理其他领域相关的新的数学技术,它将在最广泛的意义上促进数学和科学的进步。首席调查员(PI)在针对偏微分方程组(PDE)各个领域具有广泛吸引力的具体问题方面有着良好的记录。在这个意义上,被认为是这个项目的一部分的问题,虽然是针对手头的主题,但也可以在其他重要的数学物理问题中重新表述。该项目也非常符合PI的长期目标,即帮助创建一个充满活力的科学社区,致力于解决与这些领域有关的数学问题。特别是,该项目为研究生提供了研究培训机会。该项目集中于一些与黑洞有关的主要公开问题,如刚性、稳定性和崩塌,特别强调科尔族的稳定性这一根本问题。这是一组精确的、显式的爱因斯坦真空方程的解,依赖于两个参数(质量和角动量),我们对黑洞的理论理解基于这两个参数。因此,上面提到的问题不仅从数学的角度来看是深刻的,它们在天体物理学中也具有严重的影响。在稳定性问题上尤其如此,因为如果克尔家族被发现不稳定,黑洞将只不过是数学上的产物。PI将这三个相关问题解释为黑洞的数学“现实测试”。所有这三个问题都需要深入理解爱因斯坦场方程在强引力场中的动力学。这是一项艰巨的任务,只有使用新的几何偏微分方程技术,对问题的基本结构进行系统的数学分析,才能实现这一任务。这些问题的解决推动了数学和科学的进步,超出了这一特定项目的主题。事实上,正如过去经常发生的那样,预计与这些问题相关的一些技术将与其他重要的数学物理偏微分方程式相关。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergiu Klainerman其他文献
A physical space approach to wave equation bilinear estimates
- DOI:
10.1007/bf02868479 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Terence Tao - 通讯作者:
Terence Tao
The resolution of the bounded L 2 curvature conjecture in general relativity
- DOI:
10.1007/s00574-016-0161-y - 发表时间:
2016-06-22 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Jeremie Szeftel - 通讯作者:
Jeremie Szeftel
Sergiu Klainerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergiu Klainerman', 18)}}的其他基金
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
1800841 - 财政年份:2018
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
Problems in Mathematical General Relativity: Fall 2015 Trimester at Institute Henri Poincare in Paris
数学广义相对论问题:巴黎亨利庞加莱研究所 2015 年秋季学期
- 批准号:
1545144 - 财政年份:2015
- 资助金额:
$ 47.21万 - 项目类别:
Standard Grant
Problems in nonlinear hyperbolic equations
非线性双曲方程中的问题
- 批准号:
1362872 - 财政年份:2014
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
FRG: Mathematical Theory of Gravitational Collapse in General Relativity
FRG:广义相对论中引力塌缩的数学理论
- 批准号:
1065710 - 财政年份:2011
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
Mathematical Problems in General Relativity
广义相对论中的数学问题
- 批准号:
0901250 - 财政年份:2009
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
Evolution problem in General Relativity
广义相对论中的演化问题
- 批准号:
0601186 - 财政年份:2006
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
EMSW21-RTG: Integrated Approach to GraduateTraining in Analysis and Geometry
EMSW21-RTG:分析和几何研究生培训的综合方法
- 批准号:
0502295 - 财政年份:2005
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
The Problem of Evolution in General Relativity
广义相对论中的进化问题
- 批准号:
0245368 - 财政年份:2003
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
Regularity Properties of Nonlinear Evolution Equations
非线性演化方程的正则性质
- 批准号:
0070696 - 财政年份:2000
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Fundamental Fields, Black Holes and Perturbation Theory
基本场、黑洞和微扰理论
- 批准号:
2887309 - 财政年份:2023
- 资助金额:
$ 47.21万 - 项目类别:
Studentship
Gravitational Wave Modeling Using Time-Domain Black Hole Perturbation Theory
使用时域黑洞微扰理论进行引力波建模
- 批准号:
2307236 - 财政年份:2023
- 资助金额:
$ 47.21万 - 项目类别:
Continuing Grant
A mathematical approach to black hole perturbation theory
黑洞微扰理论的数学方法
- 批准号:
22K03641 - 财政年份:2022
- 资助金额:
$ 47.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Holography, Black Holes, and Conformal Field Theory
全息术、黑洞和共形场论
- 批准号:
SAPIN-2020-00047 - 财政年份:2022
- 资助金额:
$ 47.21万 - 项目类别:
Subatomic Physics Envelope - Individual
Investigating Systemic Anti-Black Racism in the Nursing Profession Through a Critical Race Theory Lens
通过批判种族理论的视角调查护理行业中系统性的反黑人种族主义
- 批准号:
490918 - 财政年份:2022
- 资助金额:
$ 47.21万 - 项目类别:
Studentship Programs
Black hole mechanics in effective field theory
有效场论中的黑洞力学
- 批准号:
2750638 - 财政年份:2022
- 资助金额:
$ 47.21万 - 项目类别:
Studentship
Quantum theory, black holes and quantum gravity
量子理论、黑洞和量子引力
- 批准号:
RGPIN-2018-04090 - 财政年份:2022
- 资助金额:
$ 47.21万 - 项目类别:
Discovery Grants Program - Individual
Exploring the Mental Well-being of Impoverished Black Women at Risk of Intimate Partner Violence: A Grounded Theory Study
探索面临亲密伴侣暴力风险的贫困黑人女性的心理健康:一项扎根理论研究
- 批准号:
475940 - 财政年份:2022
- 资助金额:
$ 47.21万 - 项目类别:
Studentship Programs
Mapping the contours of teen dating violence: An ecologically-informed grounded theory approach to understanding romantic relationship development among Black girls
绘制青少年约会暴力的轮廓:一种基于生态的扎根理论方法来理解黑人女孩之间的浪漫关系发展
- 批准号:
10575060 - 财政年份:2022
- 资助金额:
$ 47.21万 - 项目类别:
Intersectionalising Pacification Theory: an in-depth study of black working-class women in liberal-capitalist society
交叉绥靖理论:对自由资本主义社会中黑人工人阶级女性的深入研究
- 批准号:
2757396 - 财政年份:2022
- 资助金额:
$ 47.21万 - 项目类别:
Studentship