Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
基本信息
- 批准号:2306143
- 负责人:
- 金额:$ 22.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of Mathematical General Relativity concerns the mathematical description of space and time, focusing on the analysis of solutions to the Einstein equation, such as black holes. One important problem in the field is the mathematical proof of the stability of black holes, which is essential towards understanding them as realistic physical objects. If stable, black holes which are perturbed with gravitational (or other kinds of) radiation could present a temporary change but would eventually return to their initial status. The result of this work will be shared to the mathematical and physical community through peer-reviewed publications and seminars and will be disseminated to the general community through media articles, public lectures and outreach events in schools. Graduate students and postdocs will be involved in this research.Physical-space estimates for hyperbolic partial differential equations have been successfully applied to the recent proof of non-linear stability of the slowly rotating Kerr family and to the analysis of the interaction of gravitational and electromagnetic radiations in the charged Kerr-Newman black hole. The investigators plan to develop a robust approach, based on the definition of a combined energy-momentum tensor for a system of coupled wave equations, that has the potential to be applied to other matter fields. They also plan to extend the applicability of these methods to rapidly spinning black hole solutions by making use of a refined analysis of how energy methods and integrated local energy decay estimates interact in the presence of rotation. Radiations perturbing black holes are described by partial differential equations, whose properties can be studied through various techniques. Although some techniques involving decomposition in simpler forms, such as modes, have proved to be very successful, they have limitations in applications to non-linear problems and to the interaction of different kinds of radiation. This research aims to extend the known methods involving physical-space estimates for the study of stability of black hole solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学广义相对论的领域涉及空间和时间的数学描述,专注于分析爱因斯坦方程的解,例如黑洞。该领域的一个重要问题是黑洞稳定性的数学证明,这对于将它们理解为现实的物理对象至关重要。如果稳定,受到引力(或其他类型)辐射扰动的黑洞可能会出现暂时的变化,但最终会恢复到初始状态。这项工作的成果将通过同行评审的出版物和研讨会与数学和物理界分享,并将通过媒体文章、公开讲座和学校的外联活动传播给广大社区。双曲型偏微分方程的物理空间估计已成功地应用于最近慢旋转Kerr族非线性稳定性的证明和带电Kerr-Newman黑洞中引力和电磁辐射相互作用的分析。研究人员计划开发一种强大的方法,基于耦合波方程系统的组合能量-动量张量的定义,该方法有可能应用于其他物质领域。他们还计划通过利用对能量方法和综合局部能量衰减估计在旋转存在下如何相互作用的精细分析,将这些方法的适用性扩展到快速旋转的黑洞解决方案。辐射扰动黑洞的描述偏微分方程,其性质可以通过各种技术进行研究。虽然一些技术,涉及分解在更简单的形式,如模式,已被证明是非常成功的,他们有限制的非线性问题的应用程序和不同种类的辐射的相互作用。这项研究旨在扩展已知的方法,涉及物理空间的估计研究的稳定性黑洞solutions.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Giorgi其他文献
On the Local Extension of Killing Vector Fields in Electrovacuum Spacetimes
- DOI:
10.1007/s00023-019-00811-5 - 发表时间:
2019-05-16 - 期刊:
- 影响因子:1.300
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Boundedness and Decay for the Teukolsky System of Spin ±2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm \,2$$\end
- DOI:
10.1007/s00023-020-00923-3 - 发表时间:
2018-11 - 期刊:
- 影响因子:0
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Corrigendum to “Stable black holes: In vacuum and beyond”
“稳定黑洞:真空及真空之外”的勘误表
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.3
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Boundedness and Decay for the Teukolsky System of Spin $$\pm \,2$$ on Reissner–Nordström Spacetime: The Case $$|Q| \ll M$$
- DOI:
10.1007/s00023-020-00923-3 - 发表时间:
2020-06-24 - 期刊:
- 影响因子:1.300
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Stable black holes: in vacuum and beyond
- DOI:
10.1090/bull/1781 - 发表时间:
2022-09 - 期刊:
- 影响因子:1.3
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Elena Giorgi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Giorgi', 18)}}的其他基金
CAREER: Gravitational and Electromagnetic Waves on Black Holes
职业:黑洞上的引力波和电磁波
- 批准号:
2336118 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Continuing Grant
The Mathematical Theory of Black Holes with Matter
黑洞与物质的数学理论
- 批准号:
2128386 - 财政年份:2021
- 资助金额:
$ 22.39万 - 项目类别:
Standard Grant
The Mathematical Theory of Black Holes with Matter
黑洞与物质的数学理论
- 批准号:
2006741 - 财政年份:2020
- 资助金额:
$ 22.39万 - 项目类别:
Standard Grant
相似国自然基金
基于非对称k-space算子分解的时空域声波和弹性波隐式有限差分新方法研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
联合QISS和SPACE一站式全身NCE-MRA对原发性系统性血管炎的诊断价值的研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
三维流形的L-space猜想和左可序性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维space-filling问题及其相关问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
难治性焦虑障碍儿童青少年父母基于SPACE 应对技能训练团体干预疗效
- 批准号:20Y11906700
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
- 批准号:11975075
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
SPACE-RIP并行磁共振成像算法及其临床应用的研究
- 批准号:30670578
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 22.39万 - 项目类别:
Studentship
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Cooperative Agreement
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
- 批准号:
2305325 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Fellowship Award
Thermal engineering in semiconductor heterojunction for space transducers
空间换能器半导体异质结的热工程
- 批准号:
DP240102230 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Discovery Projects
Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
- 批准号:
DP240102399 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Discovery Projects
Co-evolution of supermassive black holes and galaxies with the James Webb Space Telescope
超大质量黑洞和星系与詹姆斯·韦伯太空望远镜的共同演化
- 批准号:
23K22533 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
- 批准号:
EP/Y004167/1 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Research Grant
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Research Grant
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
- 批准号:
EP/X034542/2 - 财政年份:2024
- 资助金额:
$ 22.39万 - 项目类别:
Research Grant