Collaborative Research: CIF: Small: Convexification-based Decomposition Methods for Large-Scale Inference in Graphical Models

合作研究:CIF:小型:图模型中大规模推理的基于凸化的分解方法

基本信息

  • 批准号:
    2006762
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Systems prevalent in modern society can be characterized by complex networks of interconnected components that generate massive amounts of data. The ability to make timely inferences using these data presents unprecedented opportunities to solve major societal problems. For example, advances in wearable technology are transforming the delivery of personalized healthcare and wellness programs. More broadly, wearables naturally create sensor networks over populations and the data from these networks can be harnessed to detect and/or prevent diseases, crimes or environmental hazards. Inference from such data can be naturally accomplished using graphical models. Unfortunately, existing technology for graphical models requires stringent assumptions that are seldom satisfied in modern applications. The goal of this project is to address these shortcomings by developing new computational methods that automatically infer the topology of a graphical model from high-dimensional data, identify and/or correct outliers and anomalies, and solve the estimation problems simultaneously. Furthermore, the proposed research will lead to innovative teaching material defining modern data science curricula and develop a diverse cadre of Ph.D. students with skills at the interface of discrete optimization, continuous optimization, and statistics.Inference problems with spurious data and unknown network topologies can be modeled as large-scale constrained mixed-integer convex optimization problems. To address the challenges posed by the presence of the combinatorial constraints, this project employs a combination of two key ideas. The first idea is to decompose the problem into progressively small problems, that can be solved in a decentralized and parallel fashion, by leveraging the Markov property inherent in graphical models. The second idea is the convexification of the combinatorial constraints, to diminish or prevent altogether the loss in quality from the decomposition of the problem. Unlike typical decomposition methods such as Lagrangian relaxation, which can lead to large duality gaps, this project will develop novel techniques based on convexification and Fenchel duality. In particular, the resulting method will account for the combinatorial restrictions and the nonlinear loss function concurrently, ultimately resulting in small or no duality gaps. The successful completion of the project will lead to significant advances in inference with spatio-temporal data, interpretable prediction, and identification of causal relationships.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代社会中普遍存在的系统的特征可以是生成大量数据的互连组件的复杂网络。利用这些数据进行及时推断的能力为解决重大社会问题提供了前所未有的机会。例如,可穿戴技术的进步正在改变个性化医疗保健和健康计划的交付。更广泛地说,可穿戴设备自然地在人群中创建传感器网络,并且可以利用这些网络的数据来检测和/或预防疾病,犯罪或环境危害。从这些数据中进行推断可以使用图形模型自然地完成。不幸的是,现有的图形模型技术需要严格的假设,很少满足现代应用程序。该项目的目标是通过开发新的计算方法来解决这些缺点,这些方法可以从高维数据中自动推断图形模型的拓扑结构,识别和/或纠正离群值和异常,并同时解决估计问题。此外,拟议的研究将导致定义现代数据科学课程的创新教材,并培养多样化的博士骨干。学生在离散优化,连续优化和统计的接口技能。虚假数据和未知网络拓扑的推理问题可以建模为大规模约束混合整数凸优化问题。为了解决组合约束的存在所带来的挑战,该项目采用了两个关键思想的组合。第一个想法是将问题分解为渐进的小问题,通过利用图形模型中固有的马尔可夫属性,可以以分散和并行的方式解决这些问题。第二个想法是组合约束的凸化,以减少或完全防止问题分解的质量损失。与典型的分解方法,如拉格朗日松弛,这可能会导致大的对偶差距,该项目将开发基于凸化和Fenchel对偶的新技术。特别是,由此产生的方法将占的组合限制和非线性损失函数的同时,最终导致小或没有对偶差距。该项目的成功完成将导致时空数据推理、可解释预测和因果关系识别方面的重大进展。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linear-step solvability of some folded concave and singly-parametric sparse optimization problems
  • DOI:
    10.1007/s10107-021-01766-4
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    A. Gómez;Ziyu He;J. Pang
  • 通讯作者:
    A. Gómez;Ziyu He;J. Pang
A graph-based decomposition method for convex quadratic optimization with indicators
  • DOI:
    10.1007/s10107-022-01845-0
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Peijing Liu;S. Fattahi;Andr'es G'omez;Simge Küçükyavuz
  • 通讯作者:
    Peijing Liu;S. Fattahi;Andr'es G'omez;Simge Küçükyavuz
Learning Optimal Fair Decision Trees: Trade-offs Between Interpretability, Fairness, and Accuracy
学习最优公平决策树:可解释性、公平性和准确性之间的权衡
  • DOI:
    10.1145/3600211.3604664
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jo, Nathanael;Aghaei, Sina;Benson, Jack;Gomez, Andres;Vayanos, Phebe
  • 通讯作者:
    Vayanos, Phebe
Ideal formulations for constrained convex optimization problems with indicator variables
  • DOI:
    10.1007/s10107-021-01734-y
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Linchuan Wei;A. Gómez;Simge Küçükyavuz
  • 通讯作者:
    Linchuan Wei;A. Gómez;Simge Küçükyavuz
On the convex hull of convex quadratic optimization problems with indicators
  • DOI:
    10.1007/s10107-023-01982-0
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linchuan Wei;Alper Atamtürk;Andr'es G'omez;Simge Küçükyavuz
  • 通讯作者:
    Linchuan Wei;Alper Atamtürk;Andr'es G'omez;Simge Küçükyavuz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andres Gomez其他文献

Dataset: Tracing Indoor Solar Harvesting
数据集:追踪室内太阳能收集
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Sigrist;Andres Gomez;L. Thiele
  • 通讯作者:
    L. Thiele
Energy-Efficient Bootstrapping in Multi-hop Harvesting-Based Networks
基于多跳收集的网络中的节能引导
The Horse Gut Microbiome Responds in a Highly Individualized Manner to Forage Ligni�cation
马肠道微生物组以高度个体化的方式对饲料木质化做出反应
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andres Gomez
  • 通讯作者:
    Andres Gomez
DIABETES MELLITUS DOES NOT WORSEN LONG-TERM SURVIVAL FOLLOWING ISOLATED SURGICAL AORTIC VALVE REPLACEMENT: A PROPENSITY MATCHED ANALYSIS
  • DOI:
    10.1016/s0735-1097(16)32200-8
  • 发表时间:
    2016-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin van Boxtel;Robert Sorabella;Nathaniel Langer;Nathaniel Kheysin;Andres Gomez;Sanatkumar Patel;Catherine Wang;Koji Takeda;Takayama Hiroo;Yoshifumi Naka;Michael Borger;Michael Argenziano;Craig Smith;Isaac George
  • 通讯作者:
    Isaac George
Extending the Lifetime of Nano-Blimps via Dynamic Motor Control
通过动态电机控制延长纳米飞艇的使用寿命
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniele Palossi;Andres Gomez;Stefan Draskovic;A. Marongiu;L. Thiele;L. Benini
  • 通讯作者:
    L. Benini

Andres Gomez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andres Gomez', 18)}}的其他基金

Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
  • 批准号:
    2152777
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
2022 Mixed Integer Programming Workshop Poster Session and Computational Competition; New Brunswick, New Jersey; May 24-26, 2022
2022年混合整数规划研讨会海报会议及计算竞赛;
  • 批准号:
    2211222
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Advancing Fractional Combinatorial Optimization: Computation and Applications
推进分数组合优化:计算和应用
  • 批准号:
    2128611
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Advancing Fractional Combinatorial Optimization: Computation and Applications
推进分数组合优化:计算和应用
  • 批准号:
    1818700
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了