Advancing Fractional Combinatorial Optimization: Computation and Applications

推进分数组合优化:计算和应用

基本信息

  • 批准号:
    2128611
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Single- and multiple-ratio fractional combinatorial optimization problems naturally arise in diverse application contexts when modeling trade-offs such as maximizing return/investment, maximizing profit/time, minimizing cost/time or minimizing wasted/used material. For example, risk-adverse decision-makers are often interested in solutions that provide a good trade-off between the expected return and risk, which can be modeled naturally as the ratio function. Also, fractional objectives can be used for feature selection and clustering in data mining as well as for solving isoperimetric problems on graphs that can be applied for error-correcting codes and image segmentation. There are no adequate solution approaches for these classes of optimization problems if they involve integrality and/or combinatorial restrictions (constraints). Therefore, if successful, the proposed research will substantially enhance the ability to solve these hard classes of optimization problems and can lead to a more widespread use of single- and multiple-ratio fractional measures in existing and emerging applications.The project's main goal is to develop computational approaches with the solid underlying theoretical foundation, that deliver provably good solutions and can be used to solve realistically sized instances of single- and multiple-ratio fractional combinatorial optimization problems. In order to do so, the investigators propose to systematically exploit the combinatorial structure of the feasible region and structural properties of the ratio functions to construct strong convex relaxations of the fractional combinatorial optimization problems. The investigators will also explore single- and multiple-ratio fractional combinatorial optimization problems under parameter uncertainty. The proposed research, unlike most of previous work in the related literature, does not enforce restrictive simplifying assumptions on either the combinatorial structure induced by the constraint set or the number of ratios. Furthermore, the research does not rely on assuming that the functions in the numerators and denominators of the ratios are affine. The proposed approaches draw ideas and will contribute to the literature of mathematical optimization, particularly conic, fractional and discrete optimization, combinatorics, and algebraic graph theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单比和多比分数组合优化问题自然出现在不同的应用环境中,当建模权衡,如最大限度地提高回报/投资,最大限度地提高利润/时间,最小化成本/时间或最小化浪费/使用的材料。 例如,风险逆向决策者通常对在预期收益和风险之间提供良好权衡的解决方案感兴趣,这可以自然地建模为比率函数。此外,分数目标可用于数据挖掘中的特征选择和聚类,以及用于解决可用于纠错码和图像分割的图上的等周问题。如果这些优化问题涉及完整性和/或组合约束(约束),则没有适当的解决方案。因此,如果成功,拟议的研究将大大提高解决这些困难的优化问题的能力,并可能导致在现有和新兴应用中更广泛地使用单比和多比分数测度。该项目的主要目标是开发具有坚实的基础理论基础的计算方法,提供可证明的良好解决方案,并可用于解决实际大小的单比和多比分数组合优化问题的实例。为了做到这一点,研究人员提出系统地利用可行域的组合结构和比率函数的结构性质来构造分数阶组合优化问题的强凸松弛。研究人员还将探索参数不确定性下的单比和多比分数组合优化问题。所提出的研究,不像大多数以前的工作在相关文献中,不强制限制性的简化假设,无论是组合结构诱导的约束集或比率的数量。此外,该研究不依赖于假设比率的分子和分子中的函数是仿射的。建议的方法绘制的想法,并将有助于数学优化,特别是圆锥曲线,分数和离散优化,组合学和代数图论的文献。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fractional 0–1 programming and submodularity
  • DOI:
    10.1007/s10898-022-01131-5
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Shaoning Han;A. Gómez;O. Prokopyev
  • 通讯作者:
    Shaoning Han;A. Gómez;O. Prokopyev
Ideal formulations for constrained convex optimization problems with indicator variables
  • DOI:
    10.1007/s10107-021-01734-y
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Linchuan Wei;A. Gómez;Simge Küçükyavuz
  • 通讯作者:
    Linchuan Wei;A. Gómez;Simge Küçükyavuz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andres Gomez其他文献

Dataset: Tracing Indoor Solar Harvesting
数据集:追踪室内太阳能收集
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Sigrist;Andres Gomez;L. Thiele
  • 通讯作者:
    L. Thiele
Energy-Efficient Bootstrapping in Multi-hop Harvesting-Based Networks
基于多跳收集的网络中的节能引导
The Horse Gut Microbiome Responds in a Highly Individualized Manner to Forage Ligni�cation
马肠道微生物组以高度个体化的方式对饲料木质化做出反应
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andres Gomez
  • 通讯作者:
    Andres Gomez
DIABETES MELLITUS DOES NOT WORSEN LONG-TERM SURVIVAL FOLLOWING ISOLATED SURGICAL AORTIC VALVE REPLACEMENT: A PROPENSITY MATCHED ANALYSIS
  • DOI:
    10.1016/s0735-1097(16)32200-8
  • 发表时间:
    2016-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin van Boxtel;Robert Sorabella;Nathaniel Langer;Nathaniel Kheysin;Andres Gomez;Sanatkumar Patel;Catherine Wang;Koji Takeda;Takayama Hiroo;Yoshifumi Naka;Michael Borger;Michael Argenziano;Craig Smith;Isaac George
  • 通讯作者:
    Isaac George
Extending the Lifetime of Nano-Blimps via Dynamic Motor Control
通过动态电机控制延长纳米飞艇的使用寿命
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniele Palossi;Andres Gomez;Stefan Draskovic;A. Marongiu;L. Thiele;L. Benini
  • 通讯作者:
    L. Benini

Andres Gomez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andres Gomez', 18)}}的其他基金

Collaborative Research: CDS&E: Scalable Inference for Spatio-Temporal Markov Random Fields
合作研究:CDS
  • 批准号:
    2152777
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
2022 Mixed Integer Programming Workshop Poster Session and Computational Competition; New Brunswick, New Jersey; May 24-26, 2022
2022年混合整数规划研讨会海报会议及计算竞赛;
  • 批准号:
    2211222
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Convexification-based Decomposition Methods for Large-Scale Inference in Graphical Models
合作研究:CIF:小型:图模型中大规模推理的基于凸化的分解方法
  • 批准号:
    2006762
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Advancing Fractional Combinatorial Optimization: Computation and Applications
推进分数组合优化:计算和应用
  • 批准号:
    1818700
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345437
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345438
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Fractional decomposition of graphs and the Nash-Williams conjecture
图的分数式分解和纳什-威廉姆斯猜想
  • 批准号:
    DP240101048
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
Fractional Ridge Regression
分数岭回归
  • 批准号:
    2310208
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Tuning the Frequency Response of Fractional-Order Microsupercapacitors
调整分数阶微型超级电容器的频率响应
  • 批准号:
    2423124
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
  • 批准号:
    2318139
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
  • 批准号:
    2238679
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development from PID Control to FOPID Control by Establishing Fractional-Order Control Method
通过建立分数阶控制方法从PID控制发展到FOPID控制
  • 批准号:
    23K03749
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cygnes Real: the first real-estate investment platform to use tokenisation, enabling fast, accessible and low cost fractional ownership of property
Cygnes Real:第一个使用代币化的房地产投资平台,实现快速、可访问且低成本的财产部分所有权
  • 批准号:
    10019107
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了