Collaborative Research: SHF: Small: Decentralized Edge Computing Platform for Privacy-Preserving Mobile Crowdsensing
合作研究:SHF:小型:用于保护隐私的移动群体感知的去中心化边缘计算平台
基本信息
- 批准号:2006889
- 负责人:
- 金额:$ 14.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mobile crowdsensing leverages mobile devices (e.g., smartphones and wearables) to collect sensing data from users and measure spatiotemporal phenomena (e.g., air quality and traffic speed). Yet, existing crowdsensing solutions are mainly built on a cloud-centric approach that raises significant security and privacy challenges. For example, accurate and real-time situational awareness of flooding and wildfires is important for incident commanders and residents to fight these natural hazards, and mobile crowdsensing can provide large-scale monitoring of hazards by pictures and/or input provided by mobile users. Although most users are willing to help, they may hesitate to participate in such a crowdsensing task due to privacy concerns, as their private information including GPS locations may be leaked during the transmissions to a cloud server or from the storage on the server. This project investigates a hardware and software architecture for aggregation-free and privacy-aware mobile crowdsensing by integrating software and hardware design, edge computing, distributed spatiotemporal optimization, and machine-learning-based privacy protection. Without aggregating raw sensor data to a central server, this project passes latent representations of user data among edge servers until they recover the data of all areas by spatiotemporal interpolation. The educational components of this project include local-outreach programs (e.g., the University Minority Mentor Program at the University of Florida and the research week fair at the University of California, Merced) and summer internships to enhance research opportunities for underrepresented populations, including minority and female students. This project investigates a novel software and hardware architecture that integrates spatiotemporal prediction and distributed optimization into edge computing for aggregation-free and privacy-aware mobile crowdsensing. This project designs a machine-learning pipeline that predicts sensing measurements with partially-available crowdsensed data, at the same time providing privacy-awareness without aggregating sensor data to a central server. An edge computing platform is developed to efficiently manage the above machine-learning pipeline and automatically scale up the computing resources of multiple edge servers. Two important applications, natural hazard (flood) and public health (body temperature) monitoring, will be implemented to evaluate system effectiveness and demonstrate societal impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动的人群感知利用移动的设备(例如,智能手机和可穿戴设备)来收集来自用户的感测数据并测量时空现象(例如,空气质量和交通速度)。然而,现有的人群感知解决方案主要建立在以云为中心的方法上,这带来了重大的安全和隐私挑战。例如,对洪水和野火的准确和实时的态势感知对于事件指挥官和居民对抗这些自然灾害是重要的,并且移动的人群感知可以通过由移动的用户提供的图片和/或输入来提供对灾害的大规模监测。尽管大多数用户愿意提供帮助,但由于隐私问题,他们可能会犹豫是否参与这样的人群感应任务,因为他们的私人信息(包括GPS位置)可能在传输到云服务器或从服务器上的存储器泄露。该项目通过集成软件和硬件设计、边缘计算、分布式时空优化和基于机器学习的隐私保护,研究了用于无聚合和隐私感知的移动的人群感知的硬件和软件架构。在不将原始传感器数据聚合到中央服务器的情况下,该项目在边缘服务器之间传递用户数据的潜在表示,直到它们通过时空插值恢复所有区域的数据。该项目的教育部分包括地方外联方案(例如,佛罗里达大学少数族裔导师方案和默塞德的加州大学研究周展览会)以及暑期实习,以增加少数族裔学生和女生等代表性不足的群体的研究机会。该项目研究了一种新的软件和硬件架构,该架构将时空预测和分布式优化集成到边缘计算中,用于无聚合和隐私感知的移动的人群感知。该项目设计了一个机器学习管道,可以预测部分可用的人群感知数据的感知测量,同时提供隐私意识,而无需将传感器数据聚合到中央服务器。开发边缘计算平台以有效地管理上述机器学习管道并自动扩展多个边缘服务器的计算资源。两个重要的应用,自然灾害(洪水)和公共卫生(体温)监测,将实施评估系统的有效性和展示社会影响。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interactive reinforced feature selection with traverse strategy
- DOI:10.1007/s10115-022-01812-3
- 发表时间:2023-01-21
- 期刊:
- 影响因子:2.7
- 作者:Liu,Kunpeng;Wang,Dongjie;Fu,Yanjie
- 通讯作者:Fu,Yanjie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanjie Fu其他文献
A Hierarchical Attention Model for Social Contextual Image Recommendation
用于社交上下文图像推荐的分层注意力模型
- DOI:
10.1109/tkde.2019.2913394 - 发表时间:
2018-06 - 期刊:
- 影响因子:8.9
- 作者:
Le Wu;Lei Chen;Richang Hong;Yanjie Fu;Xing Xie;Meng Wang - 通讯作者:
Meng Wang
Dual-stage Flows-based Generative Modeling for Traceable Urban Planning
基于双阶段流的可追踪城市规划生成模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xuanming Hu;Wei Fan;Dongjie Wang;Pengyang Wang;Yong Li;Yanjie Fu - 通讯作者:
Yanjie Fu
Alkali metal–lanthanide co-encapsulated 19-tungsto-2-selenate derivative and its electrochemical detection of uric acid
碱金属-镧系元素共封装19-钨-2-硒酸盐衍生物及其尿酸电化学检测
- DOI:
10.1016/j.inoche.2021.108734 - 发表时间:
2021-08 - 期刊:
- 影响因子:0
- 作者:
Limin Cui;Yanjie Fu;Lulu Liu;Jun Jiang;Ying Ding;Lijuan Chen - 通讯作者:
Lijuan Chen
Fair Graph Auto-Encoder for Unbiased Graph Representations with Wasserstein Distance
用于具有 Wasserstein 距离的无偏图表示的公平图自动编码器
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wei Fan;Kunpeng Liu;Rui Xie;Hao Liu;Hui Xiong;Yanjie Fu - 通讯作者:
Yanjie Fu
Microenvironment engineering in carbon nitride supported metal single atoms for solar driven aqueous pollutant removal
碳氮化物负载金属单原子的微环境工程用于太阳能驱动的水污染物去除
- DOI:
10.1016/j.cej.2024.158759 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:13.200
- 作者:
Shuaijun Wang;Yanan Dong;Yanjie Fu;Bin Li;Jinqiang Zhang - 通讯作者:
Jinqiang Zhang
Yanjie Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanjie Fu', 18)}}的其他基金
III: Small: Deep Interactive Reinforcement Learning for Self-optimizing Feature Selection
III:小:用于自优化特征选择的深度交互式强化学习
- 批准号:
2152030 - 财政年份:2022
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
CAREER: Reinforced Imitative Graph Learning: Bridging the Gap between Perception and Prescription in Graph Sequences
职业:强化模仿图学习:弥合图序列中感知和规定之间的差距
- 批准号:
2045567 - 财政年份:2021
- 资助金额:
$ 14.79万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Substructure-aware Spatiotemporal Representation Learning
EAGER:协作研究:子结构感知时空表示学习
- 批准号:
2040950 - 财政年份:2020
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
CRII: III: Understanding Urban Vibrancy: A Geographical Learning Approach Employing Big Crowd-Sourced Geo-Tagged Data
CRII:III:了解城市活力:采用大量众包地理标记数据的地理学习方法
- 批准号:
1947534 - 财政年份:2019
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
CRII: III: Understanding Urban Vibrancy: A Geographical Learning Approach Employing Big Crowd-Sourced Geo-Tagged Data
CRII:III:了解城市活力:采用大量众包地理标记数据的地理学习方法
- 批准号:
1755946 - 财政年份:2018
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant