Some Dynamical Questions in Hamiltonian Partial Differential Equations

哈密​​顿偏微分方程中的一些动力学问题

基本信息

  • 批准号:
    2007457
  • 负责人:
  • 金额:
    $ 24.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

For many physical phenomena dissipation of energy effects are very small and ignoring them could provide a good approximation. Such phenomena include large scale water waves in the ocean, the plasmas in space and controlled fusion devices, dynamics of stars and galaxies in astrophysics. The dynamical behavior of mathematical models of these phenomena is complex and includes formation of coherent structures, such as tsunamis in the ocean, rotating stars (e.g. Sun) and the observed galaxy structures, to name a few. One of the objectives of this project is to contribute to the understanding of the formation and persistence of such coherent structures observed in experiments and in nature. Another topic is to understand and control the instability in many applications. One such example is to control the instability of plasmas in fusion devices to achieve the goal of controlled nuclear fusion for energy production. Another example is the instability of radially rotating neutron stars, which is related to the detection of gravitational waves. Methods of mathematical analysis are the primary tools employed in this investigation. The rigorous mathematics makes it feasible to do stable numerical computations and to better understand the phenomena found in numerical and experimental studies. The project will incorporate research of students from graduate through postdoctoral levels thus providing for a vigorous mentoring program.Many conservative models have Hamiltonian structures. One goal of this proposal is to find an instability index formula for Hamiltonian PDEs with an indefinite energy functional, including gravity water waves, ion acoustic wave equations and Vlasov models for collisionless plasmas. The second goal is to find stability criteria (particularly turning point principles) for several stellar models including rotating and magnetic stars, neutron stars and relativistic galaxies. The third goal is to understand the long-time dynamics near linearly stable Bernstein–Greene–Kruskal (BGK) waves for the one-dimensional Vlasov-Poisson equation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于许多物理现象,能量耗散的影响非常小,忽略它们可以提供很好的近似值。 这些现象包括海洋中的大规模水波、太空中的等离子体和受控聚变装置、天体物理学中恒星和星系的动力学。这些现象的数学模型的动力学行为非常复杂,包括相干结构的形成,例如海洋中的海啸、旋转的恒星(例如太阳)和观察到的星系结构等等。该项目的目标之一是有助于理解在实验和自然界中观察到的这种相干结构的形成和持久性。另一个主题是理解和控制许多应用程序中的不稳定性。其中一个例子就是控制聚变装置中等离子体的不稳定性,以实现受控核聚变产生能源的目标。另一个例子是径向旋转的中子星的不稳定性,这与引力波的探测有关。数学分析方法是本次调查中使用的主要工具。严格的数学使得进行稳定的数值计算和更好地理解数值和实验研究中发现的现象成为可能。该项目将纳入从研究生到博士后水平的学生研究,从而提供强有力的指导计划。许多保守模型都具有哈密顿结构。该提案的目标之一是找到具有不定能量泛函的哈密顿偏微分方程的不稳定指数公式,包括重力水波、离子声波方程和无碰撞等离子体的 Vlasov 模型。第二个目标是找到几种恒星模型的稳定性标准(特别是转折点原理),包括旋转恒星和磁星、中子星和相对论星系。第三个目标是了解一维 Vlasov-Poisson 方程的接近线性稳定的 Bernstein-Greene-Kruskal (BGK) 波的长期动态。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Number of Traveling Wave Families in a Running Water with Coriolis Force
具有科里奥利力的流水中行波族的数量
Dynamics near the solitary waves of the supercritical gKDV equations
超临界 gKDV 方程的孤立波附近的动力学
  • DOI:
    10.1016/j.jde.2019.07.019
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jin, Jiayin;Lin, Zhiwu;Zeng, Chongchun
  • 通讯作者:
    Zeng, Chongchun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhiwu Lin其他文献

Stability of Traveling Waves of Nonlinear Schrödinger Equation with Nonzero Condition at Infinity
无穷远非零条件下非线性薛定谔方程行波的稳定性
On Linear Instability of 2D Solitary Water Waves
二维孤立水波的线性不稳定性
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiwu Lin
  • 通讯作者:
    Zhiwu Lin
Some recent results on instability of ideal plane flows
  • DOI:
    10.1090/conm/371/06857
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiwu Lin
  • 通讯作者:
    Zhiwu Lin
Unveiling the key roles in esophageal cancer drug resistance from a genetic perspective: the interplay between cytokines and immune cell phenotypes
  • DOI:
    10.1007/s12672-025-02074-5
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Huishen Yan;Zhiwu Lin;Jieying Zhang;Peiquan Zhu;Yuquan Chen;Jingyuan Liao
  • 通讯作者:
    Jingyuan Liao
Quantitative study of multiple biomarkers of colorectal tumor with diagnostic discrimination model
结直肠肿瘤多种生物标志物的诊断判别模型定量研究

Zhiwu Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhiwu Lin', 18)}}的其他基金

Coherent Structures and Nonlinear Partial Differential Equations
相干结构和非线性偏微分方程
  • 批准号:
    1715201
  • 财政年份:
    2017
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Long time dynamics of Hamiltonian PDEs
哈密​​顿偏微分方程的长期动力学
  • 批准号:
    1411803
  • 财政年份:
    2014
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Some Dynamical Problems in Fluids and Plasmas
流体和等离子体中的一些动力学问题
  • 批准号:
    0908175
  • 财政年份:
    2009
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Nonlinear Stability and Instability of Fluid and Plasma Equilibria
流体和等离子体平衡的非线性稳定性和不稳定性
  • 批准号:
    0855903
  • 财政年份:
    2008
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Nonlinear Stability and Instability of Fluid and Plasma Equilibria
流体和等离子体平衡的非线性稳定性和不稳定性
  • 批准号:
    0707397
  • 财政年份:
    2007
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Nonlinear Stability and Instability of Fluid and Plasma Equilibria
流体和等离子体平衡的非线性稳定性和不稳定性
  • 批准号:
    0505460
  • 财政年份:
    2005
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大​​风暴潮的多尺度动力学过程
  • 批准号:
    2342516
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Continuing Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Research Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了