Some Dynamical Problems in Fluids and Plasmas
流体和等离子体中的一些动力学问题
基本信息
- 批准号:0908175
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies dynamical structures in collisionless plasmas, incompressible fluids, and surface water waves. Stability of a variety of coherent structures including steady galaxies, periodic and solitary water waves, and electromagnetic plasma equilibria will be further explored. Some of these structures are unstable, which means that a small perturbation creates a large disturbance. The goal is to determine which structures are stable and which are unstable. Another focus is to understand what role these steady structures play in the long time dynamics. The invariant structures near unstable steady states, including unstable (stable) manifolds and heteroclinic orbits, will be investigated. Particular emphasis will be on the inviscid limit of these dynamical structures, which is important for understanding the transition to turbulence and the observed structures. Nonlinear damping near certain stable equilibria of non-dissipative fluids and plasmas will also be studied.The general goal of this research is to develop new and effective mathematical methods for the analysis of dynamic behavior in fluids and plasmas. Mathematical advances here will improve our understanding of the basic physical mechanisms, and also can lead to better numerical methods for simulations of these complex phenomena. Plasma is a gas composed of particles, each carrying a positive or negative electrical charge. Most of the universe is plasma; examples include the solar wind, the ionosphere, galactic nebulae, and comet tails. Plasmas also arise in physics and engineering, for instance in nuclear fusion. The stability and dynamical structures of fluids, plasmas and water waves are relevant for such diverse applications as fusion energy research, satellite and radio communications in space, wave motion in the atmosphere and oceans, and turbulent behavior of fluids. The mechanisms of nonlinear damping in the non-dissipative models are important for understanding how the large scale coherent structures (such as galaxies) in the fluid and plasma turbulence develop and evolve.
本计画研究无碰撞电浆、不可压缩流体及表面水波之动力结构。各种相干结构的稳定性,包括稳定的星系,周期性和孤立的水波,和电磁等离子体平衡将进一步探讨。其中一些结构是不稳定的,这意味着一个小的扰动会产生一个大的扰动。目的是确定哪些结构是稳定的,哪些是不稳定的。另一个重点是了解这些稳定的结构在长时间动态中起什么作用。不稳定定态附近的不变结构,包括不稳定(稳定)流形和异宿轨道,将被研究。特别强调的是这些动力学结构的无粘极限,这是很重要的理解过渡到湍流和观察到的结构。非耗散流体和等离子体在某些稳定平衡点附近的非线性阻尼也将被研究。这项研究的总目标是发展新的和有效的数学方法来分析流体和等离子体的动力学行为。这里的数学进步将提高我们对基本物理机制的理解,也可以导致更好的数值方法来模拟这些复杂的现象。等离子体是由粒子组成的气体,每个粒子都带有正电荷或负电荷。宇宙的大部分都是等离子体;例子包括太阳风、电离层、银河系星云和彗星尾巴。等离子体也出现在物理学和工程学中,例如核聚变。流体、等离子体和水波的稳定性和动力学结构与聚变能研究、太空卫星和无线电通信、大气和海洋中的波动以及流体的湍流行为等多种应用相关。非耗散模型中的非线性阻尼机制对于理解流体和等离子体湍流中的大尺度相干结构(如星系)的发展和演化具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiwu Lin其他文献
Stability of Traveling Waves of Nonlinear Schrödinger Equation with Nonzero Condition at Infinity
无穷远非零条件下非线性薛定谔方程行波的稳定性
- DOI:
10.1007/s00205-016-0998-7 - 发表时间:
2016 - 期刊:
- 影响因子:2.5
- 作者:
Zhiwu Lin;Zhengping Wang;C. Zeng - 通讯作者:
C. Zeng
On Linear Instability of 2D Solitary Water Waves
二维孤立水波的线性不稳定性
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Zhiwu Lin - 通讯作者:
Zhiwu Lin
Some recent results on instability of ideal plane flows
- DOI:
10.1090/conm/371/06857 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Zhiwu Lin - 通讯作者:
Zhiwu Lin
Unveiling the key roles in esophageal cancer drug resistance from a genetic perspective: the interplay between cytokines and immune cell phenotypes
- DOI:
10.1007/s12672-025-02074-5 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:2.900
- 作者:
Huishen Yan;Zhiwu Lin;Jieying Zhang;Peiquan Zhu;Yuquan Chen;Jingyuan Liao - 通讯作者:
Jingyuan Liao
Samll BGK waves and nonlinear Landau damping (higher dimensions)
小 BGK 波和非线性 Landau 阻尼(更高维度)
- DOI:
10.1512/iumj.2012.61.4738 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Zhiwu Lin;C. Zeng - 通讯作者:
C. Zeng
Zhiwu Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiwu Lin', 18)}}的其他基金
Some Dynamical Questions in Hamiltonian Partial Differential Equations
哈密顿偏微分方程中的一些动力学问题
- 批准号:
2007457 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Coherent Structures and Nonlinear Partial Differential Equations
相干结构和非线性偏微分方程
- 批准号:
1715201 - 财政年份:2017
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Long time dynamics of Hamiltonian PDEs
哈密顿偏微分方程的长期动力学
- 批准号:
1411803 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Nonlinear Stability and Instability of Fluid and Plasma Equilibria
流体和等离子体平衡的非线性稳定性和不稳定性
- 批准号:
0855903 - 财政年份:2008
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Nonlinear Stability and Instability of Fluid and Plasma Equilibria
流体和等离子体平衡的非线性稳定性和不稳定性
- 批准号:
0707397 - 财政年份:2007
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Nonlinear Stability and Instability of Fluid and Plasma Equilibria
流体和等离子体平衡的非线性稳定性和不稳定性
- 批准号:
0505460 - 财政年份:2005
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
- 批准号:
22KK0230 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
- 批准号:
RGPIN-2015-04623 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Scalable Algorithms for Nonlinear, Large-Scale Inverse Problems Governed by Dynamical Systems
职业:动态系统控制的非线性、大规模反问题的可扩展算法
- 批准号:
2145845 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
- 批准号:
RGPIN-2015-04623 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Construction of new phase field methods for dynamical problems in the calculus of variations
变分法动力学问题新相场方法的构建
- 批准号:
20K14343 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Stochastic Forward and Inverse Problems Involving Dynamical Systems
职业:涉及动力系统的随机正向和逆向问题
- 批准号:
1847144 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Using the Mathematics of Inverse Problems and Dynamical Systems to De-mystify Deep Neural Networks (DNNs)
使用反问题和动力系统的数学来揭开深度神经网络 (DNN) 的神秘面纱
- 批准号:
542632-2019 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Multifaceted studies on dynamical problems in the calculus of variations using geometric measure theory
利用几何测度理论对变分法动力学问题进行多方面研究
- 批准号:
18H03670 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
- 批准号:
RGPIN-2015-04623 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual