OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
基本信息
- 批准号:2007775
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Systems for High Performance Computing (HPC) have been providing rapidly increasing computing power. However, this growth has also led to systems where the memory and data movement bandwidth is relatively lower. This makes analyzing the data from scientific simulations very challenging. A paradigm called in-situ analytics has emerged in response. This project is further improving this paradigm, by using what can be referred to as homomorphic compressions. The idea of homomorphic compression is to compress the data in a way that queries can be directly executed on the compressed data (without need for decompression). This project is developing such compression methods, developing techniques to perform such compression efficiently on Graphic Processing Units (GPUs), techniques for query processing using such compressed representations, and finally, an overall system that will simplify development of in-situ analytics implementations. Overall, this project will be making analysis of data from simulations more effective on the upcoming systems for HPC. This project will seek to broaden participation in computing through direct participation in the project development teams by undergraduate and graduate students from under-represented groups. Systems for High Performance Computing (HPC) have been providing rapidly increasing computing power. However, this growth has also led to systems where the memory and data movement bandwidth is relatively lower. This makes analyzing the data from scientific simulations very challenging. A paradigm called in-situ analytics has emerged in response. This project is further improving this paradigm, by using what can be referred to as homomorphic compressions. The idea of homomorphic compression is to compress the data in a way that queries can be directly executed on the compressed data (without need for decompression). The resulting framework, ICURE, can facilitate in situ analytics on accelerators themselves, reduce overall memory requirements for the analytics, reduce total data movements costs, and even reduce the time cost of performing the analytics. Achieving the goals of ICURE involves many open challenges. The first is the choice of summarization structure and its constructions. This project experiments with two different summary or concise representations: bitmap indices and an integrated value index. The second issue is analyses methods using summary and compressed representations, where the focus is on the use of these representations for a variety of analyses tasks: computing aggregations, correlations, value-based joins, time-step selection, and interesting subregions analysis. The third issue is automating placement and quality. Driven by the consideration of providing the lowest interference between the simulation and analytics, this project automates decisions on placement of specific analytics operations and data within the node of HPC system. Similarly, automatic selection of sampling level driven by desired accuracy and overheads of the analyses is performed. This project will seek to broaden participation in computing through direct participation in the project development teams by undergraduate and graduate students from under-represented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高性能计算系统(HPC)一直在提供快速增长的计算能力。然而,这种增长也导致了内存和数据移动带宽相对较低的系统。这使得分析来自科学模拟的数据非常具有挑战性。一种名为现场分析的范式应运而生。该项目通过使用可以称为同态压缩的方法,进一步改进了这一范例。同态压缩的思想是以一种可以直接对压缩数据执行查询的方式压缩数据(不需要解压缩)。该项目正在开发这种压缩方法,开发在图形处理单元(GPU)上高效执行这种压缩的技术,使用这种压缩表示进行查询处理的技术,以及最终将简化现场分析实施的开发的整体系统。总体而言,该项目将使来自模拟的数据分析在即将到来的高性能计算系统上更加有效。该项目将寻求通过来自任职人数不足群体的本科生和研究生直接参与项目开发小组,扩大对计算机的参与。高性能计算系统(HPC)一直在提供快速增长的计算能力。然而,这种增长也导致了内存和数据移动带宽相对较低的系统。这使得分析来自科学模拟的数据非常具有挑战性。一种名为现场分析的范式应运而生。该项目通过使用可以称为同态压缩的方法,进一步改进了这一范例。同态压缩的思想是以一种可以直接对压缩数据执行查询的方式压缩数据(不需要解压缩)。由此产生的框架icure可以促进对加速器本身的现场分析,减少分析的总体内存需求,降低总体数据移动成本,甚至减少执行分析的时间成本。实现ICURE的目标涉及许多开放的挑战。一是摘要结构及其结构的选择。本项目使用两种不同的摘要或简明表示方式进行实验:位图索引和综合价值索引。第二个问题是使用摘要和压缩表示法来分析方法,其中的重点是将这些表示法用于各种分析任务:计算聚合、关联、基于值的连接、时间步长选择和感兴趣的子区域分析。第三个问题是自动布局和质量。出于在模拟和分析之间提供最低干扰的考虑,该项目自动决定在HPC系统的节点内放置特定的分析操作和数据。类似地,执行由期望的分析精度和管理费用驱动的采样水平的自动选择。这个项目将寻求通过来自代表性不足群体的本科生和研究生直接参与项目开发团队来扩大对计算的参与。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gagan Agrawal其他文献
MMIS-07, 08: Mining Multiple Information Sources Workshop Report
MMIS-07, 08:挖掘多信息源研讨会报告
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
朱兴全;Gagan Agrawal;Yuri Breitbart;Ruoming Jin - 通讯作者:
Ruoming Jin
Middleware for data mining applications on clusters and grids
- DOI:
10.1016/j.jpdc.2007.06.007 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:
- 作者:
Leonid Glimcher;Ruoming Jin;Gagan Agrawal - 通讯作者:
Gagan Agrawal
<strong>POSTER:</strong> MDS-044 Cancer Disparities in Survival of Patients With Hematologic Malignancies in the Context of Social Determinants of Health: A Systematic Review
- DOI:
10.1016/s2152-2650(23)00577-3 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Marisol Miranda-Galvis;Kellen Tjioe;Andrew Balas;Gagan Agrawal;Jorge Cortes - 通讯作者:
Jorge Cortes
Organizing Records for Retrieval in Multi-Dimensional Range Searchable Encryption
多维范围可搜索加密中组织检索记录
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mahdieh Heidaripour;Ladan Kian;Maryam Rezapour;Mark Holcomb;Benjamin Fuller;Gagan Agrawal;Hoda Maleki - 通讯作者:
Hoda Maleki
The interaction between social determinants of health and cervical cancer survival: A systematic review
健康的社会决定因素与宫颈癌生存之间的相互作用:系统评价
- DOI:
10.1016/j.ygyno.2023.12.020 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:4.100
- 作者:
Kellen Cristine Tjioe;Marisol Miranda-Galvis;Marian Symmes Johnson;Gagan Agrawal;E. Andrew Balas;Jorge E. Cortes - 通讯作者:
Jorge E. Cortes
Gagan Agrawal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gagan Agrawal', 18)}}的其他基金
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2333899 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: K-Way Speculation for Mapping Applications with Dependencies on Modern HPC Systems
SHF:小型:依赖现代 HPC 系统的地图应用程序的 K-Way 推测
- 批准号:
2334273 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF:SMALL: Compile-Parallelize-Schedule-Retarget-Repeat (EASER) Paradigm for Dealing with Extreme Heterogeneity
合作研究:SHF:SMALL:处理极端异构性的编译-并行化-调度-重定向-重复 (EASER) 范式
- 批准号:
2333895 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF:SMALL: Compile-Parallelize-Schedule-Retarget-Repeat (EASER) Paradigm for Dealing with Extreme Heterogeneity
合作研究:SHF:SMALL:处理极端异构性的编译-并行化-调度-重定向-重复 (EASER) 范式
- 批准号:
2146852 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2034850 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: K-Way Speculation for Mapping Applications with Dependencies on Modern HPC Systems
SHF:小型:依赖于现代 HPC 系统的地图应用程序的 K-Way 推测
- 批准号:
2007793 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
II-New: Infrastructure for Energy-Aware High Performance Computing (HPC) and Data Analytics on Heterogeneous Systems
II-新:异构系统上的能源感知高性能计算 (HPC) 和数据分析基础设施
- 批准号:
1513120 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: Software Elements for Transfer and Analysis of Large-Scale Scientific Data
SI2-SSE:协作研究:用于大规模科学数据传输和分析的软件元素
- 批准号:
1339757 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2341183 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2333899 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
- 批准号:
2244479 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Core: Medium: Program Synthesis for Schema Changes
协作研究:SHF:核心:媒介:模式更改的程序综合
- 批准号:
2210831 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Core: Medium: Program Synthesis for Schema Changes
协作研究:SHF:核心:媒介:模式更改的程序综合
- 批准号:
2210832 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2128036 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF CORE: Small: Hybrid NLP and Formal Techniques for Synthesizing Assertions and Identifying Ambiguities from English
SHF CORE:小型:用于综合断言和识别英语歧义的混合 NLP 和形式化技术
- 批准号:
2101021 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CISE Core: CCF: SHF: Small: Future-Proof Test Corpus Synthesis for Evolving Software
CISE 核心:CCF:SHF:小型:面向发展软件的面向未来的测试语料库合成
- 批准号:
2120955 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Core: Medium: Causal Performance Debugging for Highly-Configurable Systems
协作研究:SHF:核心:中:高度可配置系统的因果性能调试
- 批准号:
2106853 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: CNS Core: Small: Server architecture optimizations for microsecond-scale RPCs
SHF:CNS Core:小型:微秒级 RPC 的服务器架构优化
- 批准号:
2006602 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant