EAGER: GOALI: Bridging the Theory-Practice Divide in Multimedia Compression

EAGER:GOALI:弥合多媒体压缩的理论与实践鸿沟

基本信息

  • 批准号:
    2008266
  • 负责人:
  • 金额:
    $ 4.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Data compression is a central problem in engineering, both in a practical and conceptual sense. On the practical side, modern telecommunications would be impossible without sophisticated data compression algorithms, and improved compression schemes will lead to improved connectivity. On the conceptual side, since compressing a source amounts to learning its structure, data compression serves as a concrete problem with a well-defined objective that is connected to profound questions in AI. For compression of multimedia sources in particular, there has been relatively little interplay between the theoretical and experimental communities. This is arguably attributable to a lack of realism in the mathematical models used in theoretical studies and by a marked disconnection between the two communities. The GOALI project will develop new models of multimedia sources, the characterization and analysis of which will likely give rise to new theory. This project seeks to address both the mathematical realism in multimedia data models and the experimental validation of actual compression algorithms. The technical goal of the project is to develop improved mathematical models for multimedia sources by drawing on recent advances on the experimental side of the field, namely compression via deep neural networks (DNNs). This will be achieved via a collaborative project drawing together two PIs with expertise spanning theoretical and experimental approaches, helping to draw these two sides together. The project will also lead to new characterizations of the expressive power of neural networks for simulating random processes and new results connecting the problems of compression and generative modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据压缩是工程中的一个核心问题,无论是在实践还是概念上。 从实际角度来看,如果没有复杂的数据压缩算法,现代电信就不可能实现,而改进的压缩方案将改善连接性。 在概念方面,由于压缩源相当于学习其结构,因此数据压缩是一个具有明确目标的具体问题,与AI中的深刻问题有关。特别是对于多媒体源的压缩,理论界和实验界之间的相互作用相对较少。可以说,这是由于理论研究中使用的数学模型缺乏现实性,以及两个社区之间存在明显的脱节。GOALI项目将开发新的多媒体源模型,其特征和分析可能会产生新的理论。该项目旨在解决多媒体数据模型中的数学现实主义和实际压缩算法的实验验证。该项目的技术目标是通过利用该领域实验方面的最新进展,即通过深度神经网络(DNN)进行压缩,为多媒体源开发改进的数学模型。这将通过一个合作项目来实现,该项目将两个具有理论和实验方法专业知识的PI聚集在一起,帮助将这两个方面联系在一起。 该项目还将导致神经网络模拟随机过程的表达能力的新特征和连接压缩和生成建模问题的新结果。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Networks Optimally Compress the Sawbridge
  • DOI:
    10.1109/dcc50243.2021.00022
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aaron B. Wagner;Johannes Ball'e
  • 通讯作者:
    Aaron B. Wagner;Johannes Ball'e
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Wagner其他文献

Multidetector computed tomographic characteristics of nonabsorbable polymer versus titanium ligature clips in a vascular model.
血管模型中不可吸收聚合物与钛结扎夹的多探测器计算机断层扫描特征。
The Use of Leaded Surgical Gloves Reduces Hand Radiation Exposure Without Increasing Operator Radiation Dose During Fluoroscopically Guided Interventions
在透视引导的介入操作过程中,使用含铅手术手套可减少手部辐射暴露,且不会增加操作人员的辐射剂量
  • DOI:
    10.1016/j.jvs.2025.03.471
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Antonio Solano;Andrea Klein;Michael C. Siah;Gerardo Gonzalez-Guardiola;Khalil Chamseddin;Aaron Wagner;Vivek Prakash;Michael Shih;Mirza S. Baig;Carlos H. Timaran;Jeffrey Guild;Melissa L. Kirkwood
  • 通讯作者:
    Melissa L. Kirkwood
Analysis of radiation exposure learning curves for vascular surgery trainees during fluoroscopically guided interventions
血管外科实习生在透视引导下介入治疗中辐射暴露学习曲线的分析
  • DOI:
    10.1016/j.jvs.2025.03.178
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Antonio Solano;Michael Shih;Andrea Klein;Michael C. Siah;Gerardo Gonzalez-Guardiola;Khalil Chamseddin;Vivek Prakash;Aaron Wagner;M. Shadman Baig;Carlos H. Timaran;Jeffrey Guild;Melissa L. Kirkwood
  • 通讯作者:
    Melissa L. Kirkwood

Aaron Wagner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Wagner', 18)}}的其他基金

CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
  • 批准号:
    2306278
  • 财政年份:
    2023
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: A Theoretical Foundation For Practical Communication with Feedback
合作研究:CIF:媒介:带反馈的实际沟通的理论基础
  • 批准号:
    1956192
  • 财政年份:
    2020
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Continuing Grant
CIF:Medium:Collaborative Research:Maximal Leakage and Active Receivers for Side- and Covert Channel Analysis
CIF:中:协作研究:用于旁路和隐蔽信道分析的最大泄漏和有源接收器
  • 批准号:
    1704443
  • 财政年份:
    2017
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Continuing Grant
CIF: Small: Harnessing Network Compression Gains: Fundamental Limits and Practical Implementations
CIF:小型:利用网络压缩增益:基本限制和实际实施
  • 批准号:
    1617673
  • 财政年份:
    2016
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Feedback Communication: Models, Designs, and Fundamental Limits
CIF:媒介:协作研究:反馈沟通:模型、设计和基本限制
  • 批准号:
    1513858
  • 财政年份:
    2015
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Continuing Grant
CIF: Small: Moderate Deviations and Exact Asymptotics in Information Theory
CIF:小:信息论中的适度偏差和精确渐近
  • 批准号:
    1218578
  • 财政年份:
    2012
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research:Algorithms and Information-Theoretic Limits for Data-Limited Inference
CIF:小型:协作研究:数据有限推理的算法和信息论限制
  • 批准号:
    1117128
  • 财政年份:
    2011
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Toward a General Theory of Information Transfer via Timing
CIF:媒介:协作研究:通过计时实现信息传输的一般理论
  • 批准号:
    1065352
  • 财政年份:
    2011
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Information Theory for the Rare Events Regime
合作研究:罕见事件制度的信息论
  • 批准号:
    0830496
  • 财政年份:
    2008
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
CAREER: A New Look at the Fundamental Limits of Lossy Network Compression
职业生涯:有损网络压缩基本限制的新视角
  • 批准号:
    0642925
  • 财政年份:
    2007
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Continuing Grant

相似海外基金

GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
  • 批准号:
    2227366
  • 财政年份:
    2024
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
  • 批准号:
    2427203
  • 财政年份:
    2024
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
GOALI: Understanding Tribological Properties of Thermally-Synthesized Carbon
目标:了解热合成碳的摩擦学特性
  • 批准号:
    2315343
  • 财政年份:
    2024
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
GOALI: Integrated Design and Operability Optimization of Industrial-Scale Modular Intensified Systems
GOALI:工业规模模块化强化系统的集成设计和可操作性优化
  • 批准号:
    2401564
  • 财政年份:
    2024
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
  • 批准号:
    2333120
  • 财政年份:
    2024
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
  • 批准号:
    2323120
  • 财政年份:
    2024
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
  • 批准号:
    2311632
  • 财政年份:
    2023
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
GOALI: ASCENT: Online Stability Assessment, Flexibility, and Enhancement of IBR-dominated Power Systems
目标:ASCENT:IBR 主导电力系统的在线稳定性评估、灵活性和增强
  • 批准号:
    2328248
  • 财政年份:
    2023
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Standard Grant
LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
  • 批准号:
    2401218
  • 财政年份:
    2023
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了