Collaborative Research: RI: Small: Theoretical Foundations: TheAdvantage of Deep Learning over Traditional Shallow Learning Methods

合作研究:RI:小型:理论基础:深度学习相对于传统浅层学习方法的优势

基本信息

  • 批准号:
    2008559
  • 负责人:
  • 金额:
    $ 15.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Machine learning has been a primary driving force behind many current intelligent decision-making systems. Recently it shows a paradigm shift with increasing reliance on deep learning approaches, which have achieved unprecedented performance in various applications such as image processing, speech recognition, language translation, and game playing. Besides the empirical success, provable guarantees and insights into the principles behind the success have also become sought-after goals. However, the lack of adequate understanding is still limiting our capacity to fully exploit the potential of deep learning. This project aims to lay the foundations for supporting the practical trends, by understanding the advantages of deep learning over traditional learning methods, which is crucial for revealing key factors behind the practical success. The project will provide frameworks for proving performance guarantees and advantages of deep learning over traditional learning methods and enable the development of new deep learning methods that are more efficient and accessible. This project will develop a thorough and systematic approach for understanding the superior empirical performance of deep learning over traditional learning methods and use the obtained insights to design new learning methods. It will develop new theoretical models of properties on the labeling function of the data and the structure of the input leading to the practical success, and also provides frameworks for proving performance guarantees and advantages over shallow learning. It will also design new learning methods that explicitly exploit those properties and thus can be more efficient and accessible. This direction is still largely unexplored, despite significant recent research activities. The planned theoretical and algorithmic solutions are possible through an interdisciplinary mix of tools from machine learning, statistics, and optimization. The proposed program is grounded in the investigators' prior work that includes both theoretical results and empirical validation. If successful, the proposed research can be transformational for modern intelligent systems by laying the foundations for further development. It will also help to solve new theoretical problems from practice that are not adequately addressed by current theory and will have lasting impacts on machine learning and optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习一直是当前许多智能决策系统背后的主要驱动力。最近,随着对深度学习方法的依赖越来越大,它显示出一种范式转变,这些方法在图像处理、语音识别、语言翻译和游戏等各种应用中取得了前所未有的性能。除了经验上的成功,可证明的保证和对成功背后原则的洞察也成为人们追求的目标。然而,缺乏足够的理解仍然限制了我们充分利用深度学习潜力的能力。该项目旨在通过了解深度学习相对于传统学习方法的优势,为支持实践趋势奠定基础,这对于揭示实践成功背后的关键因素至关重要。该项目将提供框架,以证明深度学习相对于传统学习方法的性能保证和优势,并能够开发更有效和更易于访问的新深度学习方法。 该项目将开发一种全面和系统的方法,用于理解深度学习相对于传统学习方法的上级经验性能,并使用所获得的见解来设计新的学习方法。它将开发新的理论模型的属性上的标签功能的数据和结构的输入导致实际的成功,并提供了框架,证明性能保证和优势比浅学习。它还将设计新的学习方法,明确利用这些属性,从而可以更有效和更容易获得。这一方向在很大程度上仍然是未探索的,尽管最近的研究活动显着。计划的理论和算法解决方案可以通过机器学习,统计和优化的跨学科工具组合来实现。所提出的方案是基于调查人员的先前工作,包括理论结果和实证验证。如果成功,拟议的研究可以通过为进一步发展奠定基础来改造现代智能系统。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响评审标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attentive Walk-Aggregating Graph Neural Networks
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. F. Demirel;Shengchao Liu;Siddhant Garg;Zhenmei Shi;Yingyu Liang
  • 通讯作者:
    M. F. Demirel;Shengchao Liu;Siddhant Garg;Zhenmei Shi;Yingyu Liang
Stratified Adversarial Robustness with Rejection
  • DOI:
    10.48550/arxiv.2305.01139
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiefeng Chen;Jayaram Raghuram;Jihye Choi;Xi Wu;Yingyu Liang;S. Jha
  • 通讯作者:
    Jiefeng Chen;Jayaram Raghuram;Jihye Choi;Xi Wu;Yingyu Liang;S. Jha
The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning
  • DOI:
    10.48550/arxiv.2303.00106
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenmei Shi;Jiefeng Chen;Kunyang Li;Jayaram Raghuram;Xi Wu;Yingyu Liang;S. Jha
  • 通讯作者:
    Zhenmei Shi;Jiefeng Chen;Kunyang Li;Jayaram Raghuram;Xi Wu;Yingyu Liang;S. Jha
When and How Does Known Class Help Discover Unknown Ones? Provable Understanding Through Spectral Analysis
  • DOI:
    10.48550/arxiv.2308.05017
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiyou Sun;Zhenmei Shi;Yingyu Liang;Yixuan Li
  • 通讯作者:
    Yiyou Sun;Zhenmei Shi;Yingyu Liang;Yixuan Li
Towards Evaluating the Robustness of Neural Networks Learned by Transduction
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiefeng Chen;Xi Wu;Yang Guo;Yingyu Liang;S. Jha
  • 通讯作者:
    Jiefeng Chen;Xi Wu;Yang Guo;Yingyu Liang;S. Jha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingyu Liang其他文献

A sonographic endometrial thickness <7 mm in women undergoing in vitro fertilization increases the risk of placenta accreta spectrum
接受体外受精的女性,超声检查显示子宫内膜厚度小于7毫米会增加胎盘植入谱系疾病的风险。
  • DOI:
    10.1016/j.ajog.2024.02.301
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Siying Lai;Lizi Zhang;Yang Luo;Zhongjia Gu;Zhenping Yan;Yuliang Zhang;Yingyu Liang;Minshan Huang;Jingying Liang;Shifeng Gu;Jingsi Chen;Lei Li;Dunjin Chen;Lili Du
  • 通讯作者:
    Lili Du
Generalizing Word Embeddings using Bag of Subwords
使用子词袋概括词嵌入
  • DOI:
    10.18653/v1/d18-1059
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jinman Zhao;Sidharth Mudgal;Yingyu Liang
  • 通讯作者:
    Yingyu Liang
CS 760 Fall 2017: Example Final Project Topics
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingyu Liang
  • 通讯作者:
    Yingyu Liang
Adaptive additional current-based line differential protection in the presence of converter- interfaced sources with four quadrant operation capability
  • DOI:
    10.1016/j.ijepes.2023.109116
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yingyu Liang;Yi Ren;Zhengzhen Fan;Xiaoyang Yang
  • 通讯作者:
    Xiaoyang Yang
N-Gram Graph, A Novel Molecule Representation
N-Gram 图,一种新颖的分子表示
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengchao Liu;T. Chandereng;Yingyu Liang
  • 通讯作者:
    Yingyu Liang

Yingyu Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingyu Liang', 18)}}的其他基金

CAREER: Towards Better Understanding, Robustness, and Efficiency of Deep Learning
职业:更好地理解深度学习、增强鲁棒性和效率
  • 批准号:
    2046710
  • 财政年份:
    2021
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 15.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了