Collaborative Research: SHF: Small: Automated Quantitative Assessment of Testing Difficulty

合作研究:SHF:小型:测试难度自动定量评估

基本信息

  • 批准号:
    2008660
  • 负责人:
  • 金额:
    $ 35.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Our society is heavily reliant on software systems running on an increasingly large number of programmable devices that surround us. Moreover, the amount of software in safety-critical systems such as cars and planes keeps increasing. Software-quality assurance is one of the most fundamental problems that we are facing in this modern computing-dominated era. One can read about dependability and security problems caused by poor-quality software in the news everyday. It is extremely crucial to develop techniques that can improve the quality of software systems before they cause disastrous consequences during operation. The most common software-quality assurance technique is software testing. Although there has been a surge of progress in automated software-testing techniques, it is hard to predict their effectiveness. Given a piece of software, there is no existing technique that can predict how challenging it will be to automatically test that piece of software. In this project the goal is to develop techniques for assessing the difficulty of automatically testing software.Existing software-complexity metrics do not provide meaningful assessments of testing difficulty. This project's goal is to develop scalable techniques that can provide a quantitative assessment of testing difficulty. In order to be scalable and practical, the method has to rely on a level of abstraction that provides efficient analysis, while preserving meaningful characteristics of program behavior that relate to testing difficulty. The approach used in this project builds on two concepts that provide a promising abstraction for quantitative assessment of testing difficulty: 1) path complexity, and 2) path selectivity. Path complexity assesses how the number of paths in a given program increases with increasing execution depth, and path selectivity assesses the difficulty of finding values that satisfy a path condition. The team of researchers working on this project will develop techniques that automatically compute path complexity and path selectivity and then combine them to obtain a quantitative measure for testing difficulty. By developing techniques that can assess software-testing difficulty, this project will enable development of more effective software-testing techniques based on better resource allocation for software-quality assurance tasks. This will lead to improvements in software quality, and reduction in software defects that cause dependability and security problems. Secondly, the research activity will help to expose graduate and undergraduate students to software-quality assurance challenges and techniques. Finally, the research activity will help to disseminate the knowledge, techniques and tools developed within the scope of this project through publishing in open literature and making available the software tools that are developed as open source.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们的社会在很大程度上依赖于在我们周围越来越多的可编程设备上运行的软件系统。此外,诸如汽车和飞机之类的安全系统中的软件量一直在增加。软件质量的保证是我们在这个以现代计算为主时代中面临的最根本问题之一。人们每天都可以阅读有关新闻中质量较差的软件引起的可靠性和安全问题。开发可以在软件系统造成灾难性后果之前,开发可以提高软件系统质量的技术至关重要。最常见的软件质量保证技术是软件测试。尽管自动化软件测试技术的进展激增,但很难预测其有效性。给定一项软件,没有现有技术可以预测自动测试该软件的挑战性。在该项目中,目标是开发用于评估自动测试软件难度的技术。存在软件 - 复杂度指标不能提供有意义的测试难度评估。该项目的目标是开发可扩展技术,以提供测试难度的定量评估。为了扩展和实用,该方法必须依靠一个提供有效分析的抽象水平,同时保留与测试难度有关的计划行为的有意义的特征。该项目中使用的方法建立在两个概念上,这些概念为测试难度定量评估提供了有希望的抽象:1)路径复杂性和2)路径选择性。路径复杂性评估给定程序中的路径数量如何随着执行深度的增加而增加,而路径选择性评估了找到满足路径条件的值的困难。从事该项目的研究人员团队将开发自动计算路径复杂性和路径选择性的技术,然后组合它们以获得测试难度的定量度量。通过开发可以评估软件测试难度的技术,该项目将基于针对软件质量保证任务的更好资源分配来开发更有效的软件测试技术。这将导致软件质量的改善,并减少导致可靠性和安全问题的软件缺陷。其次,研究活动将有助于使研究生和本科生面临软件质量的保证挑战和技术。最后,研究活动将有助于传播该项目范围内开发的知识,技术和工具,并通过在开放文献中发布并提供作为开放源代码开发的软件工具。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PREACH: A Heuristic for Probabilistic Reachability to Identify Hard to Reach Statements
Rare Path Guided Fuzzing
Quantifying permissiveness of access control policies
量化访问控制策略的允许性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tevfik Bultan其他文献

Tevfik Bultan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tevfik Bultan', 18)}}的其他基金

FMitF: Track I: Scalable and Quantitative Verification for Neural Network Analysis and Design
FMITF:第一轨:神经网络分析和设计的可扩展和定量验证
  • 批准号:
    2124039
  • 财政年份:
    2021
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: HUGS: Human-Guided Software Testing and Analysis for Scalable Bug Detection and Repair
SHF:中:协作研究:HUGS:用于可扩展错误检测和修复的人工引导软件测试和分析
  • 批准号:
    1901098
  • 财政年份:
    2019
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Continuing Grant
SHF: Small: Differential Policy Verification and Repair for Access Control in the Cloud
SHF:小型:云中访问控制的差异策略验证和修复
  • 批准号:
    1817242
  • 财政年份:
    2018
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
NSF Travel and Attendance Grant Proposal for ISSTA/SPIN 2017
NSF ISSTA/SPIN 2017 差旅和出勤补助金提案
  • 批准号:
    1741648
  • 财政年份:
    2017
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Leveraging Graph Databases for Incremental and Scalable Symbolic Analysis and Verification of Web Applications
EAGER:协作研究:利用图形数据库进行增量和可扩展的 Web 应用程序符号分析和验证
  • 批准号:
    1548848
  • 财政年份:
    2015
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
SHF: Small: Data Model Verification for Web Applications
SHF:小型:Web 应用程序的数据模型验证
  • 批准号:
    1423623
  • 财政年份:
    2014
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
TC: Small: Collaborative Research: Viewpoints: Discovering Client- and Server-side Input Validation Inconsistencies to Improve Web Application Security
TC:小型:协作研究:观点:发现客户端和服务器端输入验证不一致以提高 Web 应用程序安全性
  • 批准号:
    1116967
  • 财政年份:
    2011
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Formal Analysis of Distributed Interactions
SHF:小型:协作研究:分布式交互的形式分析
  • 批准号:
    1117708
  • 财政年份:
    2011
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
TC: Small:Automata Based String Analysis for Detecting Vulnerabilities in Web Applications
TC:Small:基于自动机的字符串分析,用于检测 Web 应用程序中的漏洞
  • 批准号:
    0916112
  • 财政年份:
    2009
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
SoD-HCER: Design for Verification
SoD-HCER:验证设计
  • 批准号:
    0614002
  • 财政年份:
    2006
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了