FMitF: Track I: Scalable and Quantitative Verification for Neural Network Analysis and Design

FMITF:第一轨:神经网络分析和设计的可扩展和定量验证

基本信息

  • 批准号:
    2124039
  • 负责人:
  • 金额:
    $ 74.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Neural Networks (NNs) have been successful in many areas including computer vision, speech recognition, and natural language processing. However, due to the increasing adoption of NNs in safety-critical and socially sensitive domains such as self-driving cars, robotics, computer security, criminal justice, and medical diagnosis, there is a pressing need for developing verification techniques that can provide guarantees about dependability and safety of NN applications. Formal-verification techniques can provide guarantees of correctness; however, existing approaches are not effective in analyzing real-world NNs with large numbers of neurons and complicated model structures. This project sets a comprehensive research agenda focusing on a holistic formal-verification framework for NNs that will provide a systematic and principled approach for developing dependable and safe NNs. It is intended to benefit major machine-learning applications such as autonomous driving and contribute to the leadership of the United States in software engineering and artificial intelligence. The research findings are being widely disseminated through open-source software packages, publications in premier conferences and journals, tutorials at teaching workshops, as well as specialized K-12 programs for exposing the young generation to the frontiers of software verification and machine-learning research. The team of researchers working on this project are integrating methods from the classical computing fields such as software engineering, automated verification, and formal methods to address the unique research challenges in the dependability and safety of NN applications. Specific research directions include 1) novel symbolic quantitative analysis techniques that provide sound results for establishing dependability and safety of the state-of-the-art NN models; 2) a set of effective system-level optimizations for computation/memory efficient NN verification with sufficient cross-framework portability and high verification efficiency; 3) advanced neural architecture design and training support for exploring and developing neural network models with verifiable robustness. The success of this research agenda is intended to enable a more complete and efficient software stack for improving the scalability of NN verification techniques and the robustness of NN applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经网络(NN)在许多领域都取得了成功,包括计算机视觉、语音识别和自然语言处理。然而,由于越来越多地采用神经网络在安全关键和社会敏感的领域,如自动驾驶汽车,机器人,计算机安全,刑事司法和医疗诊断,有一个迫切需要开发验证技术,可以提供保证的可靠性和安全的神经网络应用。形式验证技术可以提供正确性的保证,然而,现有的方法是不有效的,在分析现实世界的神经网络与大量的神经元和复杂的模型结构。该项目设定了一个全面的研究议程,重点是NN的整体形式验证框架,为开发可靠和安全的NN提供系统和原则性的方法。它旨在使自动驾驶等主要机器学习应用受益,并为美国在软件工程和人工智能方面的领导地位做出贡献。研究结果正在通过开源软件包、顶级会议和期刊上的出版物、教学研讨会上的教程以及专门的K-12项目广泛传播,这些项目旨在让年轻一代了解软件验证和机器学习研究的前沿。该项目的研究团队正在整合经典计算领域的方法,如软件工程,自动验证和形式化方法,以解决NN应用程序的可靠性和安全性方面的独特研究挑战。具体的研究方向包括:1)新的符号定量分析技术,为建立最先进的神经网络模型的可靠性和安全性提供了良好的结果; 2)一组有效的系统级优化,用于计算/存储高效的神经网络验证,具有足够的跨框架可移植性和高验证效率; 3)先进的神经架构设计和训练支持,用于探索和开发具有可验证鲁棒性的神经网络模型。该研究议程的成功旨在实现一个更完整和更有效的软件栈,以提高NN验证技术的可扩展性和NN应用程序的鲁棒性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference
MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel Communication-Computation Pipelining on Multi-GPU Platforms
  • DOI:
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuke Wang;Boyuan Feng;Zheng Wang;Tong Geng;K. Barker;Ang Li;Yufei Ding
  • 通讯作者:
    Yuke Wang;Boyuan Feng;Zheng Wang;Tong Geng;K. Barker;Ang Li;Yufei Ding
APNN-TC: Accelerating Arbitrary Precision Neural Networks on Ampere GPU Tensor Cores
Faith: An Efficient Framework for Transformer Verification on GPUs
Faith:GPU 上 Transformer 验证的高效框架
QGTC: accelerating quantized graph neural networks via GPU tensor core
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tevfik Bultan其他文献

Automated verification of access control policies using a SAT solver
Guest editorial: emerging areas in automated software engineering research
  • DOI:
    10.1007/s10515-017-0223-4
  • 发表时间:
    2017-08-31
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Tevfik Bultan;Andreas Zeller
  • 通讯作者:
    Andreas Zeller
Action Language verifier: an infinite-state model checker for reactive software specifications
  • DOI:
    10.1007/s10703-009-0081-1
  • 发表时间:
    2009-09-12
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Tuba Yavuz-Kahveci;Tevfik Bultan
  • 通讯作者:
    Tevfik Bultan
Applying infinite state model checking and other analysis techniques to tabular requirements specifications of safety-critical systems
  • DOI:
    10.1007/s10617-008-9014-2
  • 发表时间:
    2008-05-14
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Tevfik Bultan;Constance Heitmeyer
  • 通讯作者:
    Constance Heitmeyer
Eliminating synchronization faults in air traffic control software via design for verification with concurrency controllers
  • DOI:
    10.1007/s10515-007-0008-2
  • 发表时间:
    2007-05-17
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Aysu Betin Can;Tevfik Bultan;Mikael Lindvall;Benjamin Lux;Stefan Topp
  • 通讯作者:
    Stefan Topp

Tevfik Bultan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tevfik Bultan', 18)}}的其他基金

Collaborative Research: SHF: Small: Automated Quantitative Assessment of Testing Difficulty
合作研究:SHF:小型:测试难度自动定量评估
  • 批准号:
    2008660
  • 财政年份:
    2020
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: HUGS: Human-Guided Software Testing and Analysis for Scalable Bug Detection and Repair
SHF:中:协作研究:HUGS:用于可扩展错误检测和修复的人工引导软件测试和分析
  • 批准号:
    1901098
  • 财政年份:
    2019
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Continuing Grant
SHF: Small: Differential Policy Verification and Repair for Access Control in the Cloud
SHF:小型:云中访问控制的差异策略验证和修复
  • 批准号:
    1817242
  • 财政年份:
    2018
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
NSF Travel and Attendance Grant Proposal for ISSTA/SPIN 2017
NSF ISSTA/SPIN 2017 差旅和出勤补助金提案
  • 批准号:
    1741648
  • 财政年份:
    2017
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Leveraging Graph Databases for Incremental and Scalable Symbolic Analysis and Verification of Web Applications
EAGER:协作研究:利用图形数据库进行增量和可扩展的 Web 应用程序符号分析和验证
  • 批准号:
    1548848
  • 财政年份:
    2015
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
SHF: Small: Data Model Verification for Web Applications
SHF:小型:Web 应用程序的数据模型验证
  • 批准号:
    1423623
  • 财政年份:
    2014
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
TC: Small: Collaborative Research: Viewpoints: Discovering Client- and Server-side Input Validation Inconsistencies to Improve Web Application Security
TC:小型:协作研究:观点:发现客户端和服务器端输入验证不一致以提高 Web 应用程序安全性
  • 批准号:
    1116967
  • 财政年份:
    2011
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Formal Analysis of Distributed Interactions
SHF:小型:协作研究:分布式交互的形式分析
  • 批准号:
    1117708
  • 财政年份:
    2011
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
TC: Small:Automata Based String Analysis for Detecting Vulnerabilities in Web Applications
TC:Small:基于自动机的字符串分析,用于检测 Web 应用程序中的漏洞
  • 批准号:
    0916112
  • 财政年份:
    2009
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
SoD-HCER: Design for Verification
SoD-HCER:验证设计
  • 批准号:
    0614002
  • 财政年份:
    2006
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
  • 批准号:
    2327456
  • 财政年份:
    2024
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Harnessing a scalable platform to demonstrate multipartite quantum effects under strict conditions
ExpandQISE:轨道 1:利用可扩展平台在严格条件下演示多部分量子效应
  • 批准号:
    2328800
  • 财政年份:
    2023
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮​​点误差分析
  • 批准号:
    2319507
  • 财政年份:
    2023
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Scalable Quantum Gravimeters with Large-Momentum-Transfer Atom Interferometry
ExpandQISE:轨道 1:具有大动量转移原子干涉测量技术的可扩展量子重力仪
  • 批准号:
    2328663
  • 财政年份:
    2023
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Programmed Material Transport Properties via Scalable Assembly Processes
RII Track-4:NSF:通过可扩展组装工艺编程材料传输属性
  • 批准号:
    2229784
  • 财政年份:
    2023
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
Fast-track: Scalable digital delivery of evidence-based training for addiction professionals to maximize treatment admission and retention rates of opioid use disorder in affected families.
快速通道:为成瘾专业人士提供可扩展的数字化循证培训,以最大限度地提高受影响家庭阿片类药物使用障碍的治疗入院率和保留率。
  • 批准号:
    10482203
  • 财政年份:
    2022
  • 资助金额:
    $ 74.92万
  • 项目类别:
RII Track-2 FEC: Laying the Foundation for Scalable Quantum Photonic Technologies
RII Track-2 FEC:为可扩展量子光子技术奠定基础
  • 批准号:
    2217786
  • 财政年份:
    2022
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Cooperative Agreement
SCC-IRG Track 2: Scalable Modeling and Adaptive Real-time Trust-based Communication (SMARTc) System for Roadway Inundations in Flood-Prone Communities
SCC-IRG 第 2 轨:针对易受洪水影响的社区道路洪水的可扩展建模和自适应实时基于信任的通信 (SMARTc) 系统
  • 批准号:
    1951745
  • 财政年份:
    2020
  • 资助金额:
    $ 74.92万
  • 项目类别:
    Standard Grant
Representative, scalable, and sustainable surveillance methodologies to track companion animal antimicrobial use
用于跟踪伴侣动物抗菌药物使用的代表性、可扩展且可持续的监测方法
  • 批准号:
    10678641
  • 财政年份:
    2020
  • 资助金额:
    $ 74.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了