SCenE - Self-Assessment and Continual Learning on Edge Devices
SCenE - 边缘设备的自我评估和持续学习
基本信息
- 批准号:2008690
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) systems and machine learning algorithms lay at the heart of modern autonomy in theory but have experienced a bottleneck in expansion into real-world systems. Typically, in the case of real-world environments, AI systems are considered untrustworthy and are lacking the ability to adapt to an ever-changing environment, requiring continuous maintenance and tuning to stay relevant. Most current AI systems are constrained by their knowledge gathered during training and development. In order for a system to be truly intelligent, they must incorporate learning frameworks that are aware of their own limitations, have an expandable knowledge base in case of failure after deployment, and have the capabilities to operate within available energy budgets in a continuous and dynamic real-world environment. The goal for this project is to develop a rigorous and scalable learning framework that will enable the development of data-driven algorithms that can self-assess their performance and continually expand upon their prior knowledge while operating in real-time on a limited energy budget. This work will equally impact academic research and economic development through collaborations with industrial partners as well as local, regional and federal government agencies. The case study examples include healthcare, intelligent transportation systems, surveillance, severe weather and flood monitoring, aviation and rotorcraft safety, agriculture, vegetation, and endangered species monitoring, and smart and connected campus and communities. Collaboration with the Atlantic Cape Community College will serve as a basis to disseminate the research contributions to the next generation of STEM students. The developed algorithms, source code, and hardware configurations will be made available to the public through open-source data-sharing platforms. We aim to tackle the limitations of the current AI systems and learning algorithms, which are based on deterministic and over-confident deep neural networks. The learned parameters of these models are frozen after training and deployed on possibly energy-constrained edge platforms. These models cannot adapt to non-stationary environments resulting in failures in continuously changing environments. The objective of this project is to develop a rigorous, scalable, and open-source learning framework that would facilitate the development and deployment of data-driven algorithms, which can self-assess performance and continually adapt to streaming datasets while operating in real-time on a limited energy budget. We propose a new fundamental approach to machine learning systems that will: (1) provide a theoretical foundation for self-assessment of modern learning algorithms via quantifying confidence in network decisions through the propagation of distribution moments over unknown network parameters, (2) spur the development of self-assessment methods through the monitoring of variance-covariance parameters of the estimated predictive distribution, (3) derive new training methods that allow for algorithms to operate within a given power budget while achieving continual adaptation from streaming datasets through leveraging metrics of kernel importance based on variance-covariance information, and (4) assess the validity of the mathematical derivations and subsequently developed algorithms using benchmark public datasets and real-world applications with our government, industry and academic collaborators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)系统和机器学习算法在理论上是现代自治的核心,但在扩展到现实世界的系统时遇到了瓶颈。通常情况下,在现实环境中,人工智能系统被认为是不值得信赖的,并且缺乏适应不断变化的环境的能力,需要持续维护和调整才能保持相关性。目前大多数人工智能系统都受到在培训和开发过程中收集的知识的限制。为了使系统真正智能化,它们必须包含了解自身局限性的学习框架,在部署后发生故障时具有可扩展的知识库,并且能够在连续和动态的现实环境中在可用的能源预算范围内运行。该项目的目标是开发一个严格且可扩展的学习框架,该框架将能够开发数据驱动的算法,这些算法可以自我评估其性能,并在有限的能源预算下实时运行时不断扩展其先前的知识。这项工作将通过与工业伙伴以及地方、地区和联邦政府机构的合作,对学术研究和经济发展产生同等影响。案例研究的例子包括医疗保健、智能交通系统、监控、恶劣天气和洪水监测、航空和旋翼机安全、农业、植被和濒危物种监测,以及智能和互联的校园和社区。与大西洋海角社区学院的合作将作为向下一代STEM学生传播研究成果的基础。开发的算法,源代码和硬件配置将通过开源数据共享平台向公众提供。我们的目标是解决当前人工智能系统和学习算法的局限性,这些系统和算法基于确定性和过度自信的深度神经网络。这些模型的学习参数在训练后被冻结,并部署在可能受能量约束的边缘平台上。这些模型不能适应非平稳环境,导致在不断变化的环境中失败。该项目的目标是开发一个严格的,可扩展的和开源的学习框架,以促进数据驱动算法的开发和部署,这些算法可以自我评估性能并不断适应流数据集,同时在有限的能源预算下实时运行。我们提出了一种新的机器学习系统的基本方法,它将:(1)通过分布矩在未知网络参数上的传播来量化网络决策中的置信度,从而为现代学习算法的自评估提供理论基础,(2)通过监测估计的预测分布的方差-协方差参数来促进自评估方法的发展,(3)导出新的训练方法,该方法允许算法在给定的功率预算内操作,同时通过基于方差-协方差信息利用内核重要性的度量来实现从流数据集的持续适应,以及(4)与我们的政府一起使用基准公共数据集和真实世界应用来评估数学推导和随后开发的算法的有效性,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-Compression in Bayesian Neural Networks
- DOI:10.1109/mlsp49062.2020.9231550
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Giuseppina Carannante;Dimah Dera;G. Rasool;N. Bouaynaya
- 通讯作者:Giuseppina Carannante;Dimah Dera;G. Rasool;N. Bouaynaya
PremiUm-CNN: Propagating Uncertainty Towards Robust Convolutional Neural Networks
- DOI:10.1109/tsp.2021.3096804
- 发表时间:2021
- 期刊:
- 影响因子:5.4
- 作者:Dimah Dera;N. Bouaynaya;G. Rasool;R. Shterenberg;H. Fathallah-Shaykh
- 通讯作者:Dimah Dera;N. Bouaynaya;G. Rasool;R. Shterenberg;H. Fathallah-Shaykh
Comparative Analysis of Machine Learning and Statistical Methods for Aircraft Phase of Flight Prediction
飞机飞行阶段预测的机器学习和统计方法比较分析
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kovarik, Stephen;Doherty, Liam;Korah, Kiran;Mulligan, Brian;Rasool, Ghulam;Mehta, Yusuf;Bhavsar, Parth;Paglione, Mike
- 通讯作者:Paglione, Mike
Robust Learning via Ensemble Density Propagation in Deep Neural Networks
- DOI:10.1109/mlsp49062.2020.9231635
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Giuseppina Carannante;Dimah Dera;G. Rasool;N. Bouaynaya;L. Mihaylova
- 通讯作者:Giuseppina Carannante;Dimah Dera;G. Rasool;N. Bouaynaya;L. Mihaylova
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ghulam Rasool其他文献
A novel thermal-cloak-based thermal design for preventing thermal runaway propagation in lithium-ion battery packs
一种基于新型热隐身的热设计,用于防止锂离子电池组中的热失控传播
- DOI:
10.1016/j.est.2025.116828 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:9.800
- 作者:
Tao Sun;Yulong Yan;Jie Sui;Xinhua Wang;Ghulam Rasool;Kai Zhang - 通讯作者:
Kai Zhang
408 A Machine Learning-Assisted Automated Digital Urine Cytology Screening System
408 机器学习辅助的自动化数字尿液细胞学筛查系统
- DOI:
10.1016/j.labinv.2024.102635 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.200
- 作者:
Hongzhi Xu;Jasreman Dhillon;Vaibhav Chumbalkar;Aram Vosoughi;Ghulam Rasool - 通讯作者:
Ghulam Rasool
Study on the influence of the transmission tower on the AC interference distribution on the surface of a buried steel pipeline under steady-state conditions
- DOI:
10.1016/j.epsr.2023.109852 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Yuexin Wang;Xinhua Wang;Tao Sun;Ghulam Rasool;Lin Yang;Yongsheng Qi - 通讯作者:
Yongsheng Qi
Magnetized casson SA-hybrid nanofluid flow over a permeable moving surface with thermal radiation and Joule heating effect
- DOI:
10.1016/j.csite.2023.103510 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Liaquat Ali Lund;Adnan Asghar;Ghulam Rasool;Ubaidullah Yashkun - 通讯作者:
Ubaidullah Yashkun
Correlation between mandibular base length and dental crowding in patients with class II malocclusions
Ⅱ类错牙合患者下颌基长与牙齿拥挤的相关性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Wasim Ijaz;Hasan Ali Raza;Ghulam Rasool;Syed Suleman Shah;Anjum Iqbal - 通讯作者:
Anjum Iqbal
Ghulam Rasool的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ghulam Rasool', 18)}}的其他基金
PFI-TT: Trustworthy Artificial Intelligence for the Volumetric Evaluation of Brain Tumors
PFI-TT:用于脑肿瘤体积评估的值得信赖的人工智能
- 批准号:
2234468 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
I-Corps: Detecting Performance Degradation and Failures of Deep Neural Networks in Cancer Imaging
I-Corps:检测癌症成像中深层神经网络的性能下降和故障
- 批准号:
2304799 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SCenE - Self-Assessment and Continual Learning on Edge Devices
SCenE - 边缘设备的自我评估和持续学习
- 批准号:
2234836 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
- 批准号:81501521
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
- 批准号:11301190
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
- 批准号:11126152
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
- 批准号:81001041
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
- 批准号:31070711
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Utilizing Interactive Videos to Assist Self and Peer Assessment of Students' Speaking
利用互动视频辅助学生口语自评和互评
- 批准号:
24K16138 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A data-saving and self-supervised deep learning system for continuous ischemic stroke assessment
用于连续缺血性中风评估的数据保存和自我监督深度学习系统
- 批准号:
24K15011 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cyber Essentials Intelligent Self-Assessment Assistant (CEISAA)
Cyber Essentials 智能自我评估助手 (CEISAA)
- 批准号:
10076703 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Program Assessment Conference for Mathematics: Creating Tools for Math Departments to Self-Assess Professional Development Programs for their Graduate Student Instructors
数学项目评估会议:为数学系创建工具来自我评估研究生导师的专业发展项目
- 批准号:
2306211 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Technology Readiness Self-Assessment Dashboard
技术准备情况自我评估仪表板
- 批准号:
10076441 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant for R&D
Voluntary National Retail Food Regulatory Program Standards Self-Assessment & Verification Audit Online Workshop
自愿国家零售食品监管计划标准自我评估
- 批准号:
10722279 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Development and pilot of a novel digital puberty self-assessment tool
新型数字青春期自我评估工具的开发和试点
- 批准号:
MR/X028984/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Promoting taxpayers' voluntary information disclosure under the self-assessment tax system and a new development of tax penalty and procedural legislations.
推动纳税人在自评税制下自愿信息披露以及税收处罚和程序立法的新发展。
- 批准号:
23K12370 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a rubric for nurses' employability self-assessment
制定护士就业能力自我评估标准
- 批准号:
23K16385 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cyber hygiene self-assessment maturity tool
网络卫生自我评估成熟度工具
- 批准号:
10076973 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D