I-Corps: Detecting Performance Degradation and Failures of Deep Neural Networks in Cancer Imaging
I-Corps:检测癌症成像中深层神经网络的性能下降和故障
基本信息
- 批准号:2304799
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of a failure detection framework that learns the behavior of the machine learning model under various noisy conditions. This solution is currently focused on cancer imaging applications, especially head and neck, lung and brain cancers. Neural networks are used in many areas of the human endeavor, and their use is expected to increase exponentially. These machine learning models do not provide a measure of confidence in the decisions and fail without warning. There are no solutions for addressing these issues except manually monitoring and reviewing the performance of these models after deployment. The proposed technology can integrate seamlessly with any machine learning model before or after deployment and output model confidence in the decision with minimal additional computational cost. The proposed technology will help artificial intelligence find its true potential in mission-critical areas. The proposed mechanisms for detecting performance degradation and model failure can provide a path to achieve the much-desired trustworthiness in artificial intelligence models. The applicability of the proposed technology encompasses various areas, including healthcare, transportation, cybersecurity, economics, environment, and financial services.This I-Corps project is based on the development of a generalized framework that quantifies the performance and detects failure in all types of machine learning models, including convolutional neural networks and transformers. This framework does not require retraining of the original model and can be used as an out-of-the-box solution. This technique consists of different methods to identify the type of machine learning model and its output. This information is used to specify a fixed threshold or learn a dynamic one. These threshold values serve as a guide for identifying the performance degradation of the machine learning model. In the first case, the technology defines a fixed threshold value based on the model performance on the test dataset with a changing signal-to-noise ratio. The second method learns the threshold value using a shallow neural network. The proposed failure detection methods seamlessly integrate with the original machine learning model and abstain from making decisions when the model’s confidence is below the threshold. This technique, when used during the machine learning model training phase, can help improve model accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个i-Corps项目的更广泛的影响/商业潜力是开发一个故障检测框架,该框架可以学习机器学习模型在各种噪声条件下的行为。该解决方案目前专注于癌症成像应用,特别是头颈部、肺癌和脑癌。神经网络被用于人类工作的许多领域,预计它们的使用将呈指数级增长。这些机器学习模型不能提供对决策的信心,而且会在没有警告的情况下失败。除了在部署后手动监视和审查这些模型的性能外,没有解决这些问题的解决方案。该技术可以在部署前或部署后与任何机器学习模型无缝集成,并以最小的额外计算代价输出模型对决策的置信度。这项拟议的技术将帮助人工智能在关键任务领域发现其真正的潜力。所提出的检测性能下降和模型故障的机制可以提供一条在人工智能模型中实现人们所期望的可信性的途径。该技术的适用性涵盖医疗、交通、网络安全、经济、环境和金融服务等多个领域。这个i-Corps项目基于开发一个通用框架,该框架可以量化所有类型的机器学习模型的性能并检测故障,包括卷积神经网络和转换器。该框架不需要对原始模型进行再培训,可用作开箱即用的解决方案。该技术包括识别机器学习模型类型及其输出的不同方法。该信息用于指定固定阈值或学习动态阈值。这些阈值用作识别机器学习模型的性能降级的指南。在第一种情况下,该技术基于在具有变化的信噪比的测试数据集上的模型性能来定义固定阈值。第二种方法使用浅层神经网络学习阈值。所提出的故障检测方法与原有的机器学习模型无缝集成,当模型的置信度低于阈值时不再进行决策。这项技术在机器学习模型培训阶段使用时,可以帮助提高模型的准确性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ghulam Rasool其他文献
A novel thermal-cloak-based thermal design for preventing thermal runaway propagation in lithium-ion battery packs
一种基于新型热隐身的热设计,用于防止锂离子电池组中的热失控传播
- DOI:
10.1016/j.est.2025.116828 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:9.800
- 作者:
Tao Sun;Yulong Yan;Jie Sui;Xinhua Wang;Ghulam Rasool;Kai Zhang - 通讯作者:
Kai Zhang
408 A Machine Learning-Assisted Automated Digital Urine Cytology Screening System
408 机器学习辅助的自动化数字尿液细胞学筛查系统
- DOI:
10.1016/j.labinv.2024.102635 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.200
- 作者:
Hongzhi Xu;Jasreman Dhillon;Vaibhav Chumbalkar;Aram Vosoughi;Ghulam Rasool - 通讯作者:
Ghulam Rasool
Magnetized casson SA-hybrid nanofluid flow over a permeable moving surface with thermal radiation and Joule heating effect
- DOI:
10.1016/j.csite.2023.103510 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Liaquat Ali Lund;Adnan Asghar;Ghulam Rasool;Ubaidullah Yashkun - 通讯作者:
Ubaidullah Yashkun
Study on the influence of the transmission tower on the AC interference distribution on the surface of a buried steel pipeline under steady-state conditions
- DOI:
10.1016/j.epsr.2023.109852 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Yuexin Wang;Xinhua Wang;Tao Sun;Ghulam Rasool;Lin Yang;Yongsheng Qi - 通讯作者:
Yongsheng Qi
Correlation between mandibular base length and dental crowding in patients with class II malocclusions
Ⅱ类错牙合患者下颌基长与牙齿拥挤的相关性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Wasim Ijaz;Hasan Ali Raza;Ghulam Rasool;Syed Suleman Shah;Anjum Iqbal - 通讯作者:
Anjum Iqbal
Ghulam Rasool的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ghulam Rasool', 18)}}的其他基金
PFI-TT: Trustworthy Artificial Intelligence for the Volumetric Evaluation of Brain Tumors
PFI-TT:用于脑肿瘤体积评估的值得信赖的人工智能
- 批准号:
2234468 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SCenE - Self-Assessment and Continual Learning on Edge Devices
SCenE - 边缘设备的自我评估和持续学习
- 批准号:
2234836 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SCenE - Self-Assessment and Continual Learning on Edge Devices
SCenE - 边缘设备的自我评估和持续学习
- 批准号:
2008690 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Performance of the pooled testing strategy for detecting and estimating the prevalence and intensity of Schistosoma haematobium infection at a population level
用于检测和估计人群水平埃及血吸虫感染流行率和强度的汇总检测策略的执行情况
- 批准号:
10453270 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Performance of the pooled testing strategy for detecting and estimating the prevalence and intensity of Schistosoma haematobium infection at a population level
用于检测和估计人群水平埃及血吸虫感染流行率和强度的汇总检测策略的执行情况
- 批准号:
10597678 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Assessing the Performance of Masonry Railway Viaducts in the UK by Detecting Hidden Defects and Geometric Features =Structural Engineering
通过检测隐藏缺陷和几何特征来评估英国砖石铁路高架桥的性能=结构工程
- 批准号:
2184142 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Studentship
A Detection Framework For Anomalous Behavior in IoT Devices: Applications to Detecting of Malwares and Performance Degradation
物联网设备异常行为的检测框架:恶意软件和性能下降检测的应用
- 批准号:
518793-2018 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Assessing and Detecting Components Suffering from Sub-optimal Performance for a Web-based CRM System
评估和检测基于 Web 的 CRM 系统性能不佳的组件
- 批准号:
530840-2018 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Engage Grants Program
A Detection Framework For Anomalous Behavior in IoT Devices: Applications to Detecting of Malwares and Performance Degradation
物联网设备异常行为的检测框架:恶意软件和性能下降检测的应用
- 批准号:
518793-2018 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
SHF: Small: RUI: Characterizing, Detecting, and Fixing Performance Bugs That Have Non-Intrusive Fixes
SHF:小:RUI:表征、检测和修复具有非侵入式修复的性能错误
- 批准号:
1644285 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SHF: Small: RUI: Characterizing, Detecting, and Fixing Performance Bugs That Have Non-Intrusive Fixes
SHF:小:RUI:表征、检测和修复具有非侵入式修复的性能错误
- 批准号:
1528134 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Study on the High Performance of Piezoelectric Vibration Sensor for Detecting Two-Axis Acceleration and One-Axis Angular Velocity
检测两轴加速度和一轴角速度的高性能压电振动传感器研究
- 批准号:
25390118 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-Performance Radio Source Estimation Techniques Using MIMO Antennas for Detecting Position and Spread of Each Radio Source
使用 MIMO 天线检测每个无线电源的位置和分布的高性能无线电源估计技术
- 批准号:
24560451 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)