AF: Small: Algorithms meet Structural Graph Decomposition
AF:小:算法满足结构图分解
基本信息
- 批准号:2008838
- 负责人:
- 金额:$ 34.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A graph consists of dots, called vertices, representing objects, and lines between these dots, called edges, representing relationships between the objects the edge connects. Graphs and graph algorithms have a crucial role in computing, and by extension in all of science. They are used to model such diverse objects as people and friendships (social networks such as Facebook or LinkedIn), maps (Google Maps), connections between neurons in the brain, or the possible configurations of pieces on a chess-board connected by valid moves of chess pieces. For this reason graphs are extensively studied, both from structural and computational viewpoints. The structural approach to graphs often seeks to explain what a graph has to "look like" when it has certain desirable properties. The computational viewpoint seeks to design algorithms (efficient computer programs) that can process a graph to answer questions about it. For example, what is the shortest path from one place (vertex) to another? Which person on this social network is the "most influential?", etc. The aim of this project is a closer connection between the computational and the structural approaches to graphs. Such a connection already exists - for example many graph algorithms are based on powerful structural graph decompositions. However, the usage of structure decompositions in algorithms is most commonly in a black-box fashion - the algorithms simply exploit the structure provided by the theorems. Because the structure theorems were not designed with these concrete algorithmic applications in mind, the obtained algorithms have sub-optimal performance. For other important algorithmic problems the existing structure theorems seem to “not quite fit”, leaving efficient algorithms for these problems just out of reach. In this project the team of researchers will prove new algorithmically-focused graph-structure theorems, and use the new structure theorems to design efficient algorithms.The investigator has identified several directions where algorithmically-minded structure theorems have a big potential for success: graph isomorphism on minor-free graphs, optimization problems on weighted graphs, and (generalized) cut and separation problems. In each of these directions the team of researchers will design radically new algorithms with superior performance guarantees, and take the field far beyond the state of the art. The project cuts to the heart of several well-known open problems in theoretical computer science, specifically within the fields of parameterized algorithms and approximation algorithms. Is there a polynomial time for graph isomprohism if the input graphs exclude a clique with log log(n) vertices as a minor? What is the best approximation algorithm for deleting the fewest possible vertices to get a planar graph? Can approximation schemes for unweighted problems on planar graphs be lifted to their weighted counterparts? What is the parameterized complexity of removing k vertices of minimum weight from a digraph to make it acyclic? This project is to resolve these problems by designing new and algorithmically efficient graph-decomposition theorems. The new decomposition theorems will be built on completely new insights, as well novel combinations of insights from structural graph theory and algorithms. The combination of graph-theoretic and algorithmic thinking holds a wealth of untapped potential. Therefore the results of this project will yield substantial new results both in algorithms and in structural graph theory, and will bring the two fields closer together.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形由点(称为顶点)和点之间的线(称为边)组成,点表示对象,点之间的线表示边缘连接的对象之间的关系。图和图算法在计算中起着至关重要的作用,并延伸到所有科学中。它们被用来模拟各种各样的对象,比如人和友谊(Facebook或LinkedIn等社交网络)、地图(谷歌maps)、大脑神经元之间的连接,或者通过棋子的有效移动来连接棋盘上棋子的可能配置。因此,从结构和计算的角度对图进行了广泛的研究。图的结构方法通常试图解释当图具有某些理想属性时它必须“看起来像”什么。计算观点寻求设计算法(高效的计算机程序),可以处理图形来回答有关它的问题。例如,从一个地方(顶点)到另一个地方(顶点)的最短路径是什么?在这个社交网络上,哪个人是“最有影响力的?”等等。这个项目的目的是在图的计算方法和结构方法之间建立更紧密的联系。这种联系已经存在——例如,许多图算法都是基于强大的结构图分解。然而,在算法中使用结构分解最常见的是一种黑盒方式——算法只是利用定理提供的结构。由于在设计结构定理时没有考虑到这些具体的算法应用,所得到的算法具有次优性能。对于其他重要的算法问题,现有的结构定理似乎“不太适合”,使得这些问题的有效算法遥不可及。在这个项目中,研究人员团队将证明新的以算法为中心的图结构定理,并使用新的结构定理来设计高效的算法。研究者已经确定了几个方向,其中算法思想结构定理有很大的成功潜力:图同构在次要无图,优化问题在加权图,和(广义)切割和分离问题。在这些方向中,研究团队将设计出具有卓越性能保证的全新算法,并使该领域远远超出目前的技术水平。该项目触及了理论计算机科学中几个众所周知的开放问题的核心,特别是在参数化算法和近似算法领域。如果输入图排除了一个具有log log(n)个顶点的团,那么图的等差性是否存在多项式时间?什么是最好的近似算法删除最少可能的顶点得到一个平面图?平面图上未加权问题的近似方案是否可以提升到它们的加权对应物?从有向图中移除k个最小权值的顶点,使其成为无环的参数化复杂度是多少?本项目旨在通过设计新的算法高效的图分解定理来解决这些问题。新的分解定理将建立在全新的见解上,以及结构图论和算法见解的新颖组合。图论和算法思维的结合拥有大量未开发的潜力。因此,这个项目的结果将在算法和结构图论方面产生实质性的新结果,并将使这两个领域更加紧密地联系在一起。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diversity in Kemeny Rank Aggregation: A Parameterized Approach
Kemeny 排名聚合的多样性:参数化方法
- DOI:10.24963/ijcai.2021/2
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Arrighi, Emmanuel;Fernau, Henning;Lokshtanov, Daniel;de Oliveira Oliveira, Mateus;Wolf, Petra
- 通讯作者:Wolf, Petra
On the Parameterized Complexity of Reconfiguration of Connected Dominating Sets
论连通支配集重构的参数化复杂性
- DOI:10.1007/s00453-021-00909-5
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Lokshtanov, Daniel;Mouawad, Amer E.;Panolan, Fahad;Siebertz, Sebastian
- 通讯作者:Siebertz, Sebastian
Exploiting Dense Structures in Parameterized Complexity
在参数化复杂性中利用密集结构
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lochet, William;Lokshtanov, Daniel;Saurabh, Saket;Zehavi, Meirav
- 通讯作者:Zehavi, Meirav
A Constant Factor Approximation for Navigating Through Connected Obstacles in the Plane
用于导航通过平面内相连障碍物的常数因子近似
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kumar, Neeraj;Lokshtanov, Daniel;Saurabh, Saket;Suri, Subhash
- 通讯作者:Suri, Subhash
b-Coloring Parameterized by Clique-Width
- DOI:10.4230/lipics.stacs.2021.43
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:L. Jaffke;Paloma T. Lima;D. Lokshtanov
- 通讯作者:L. Jaffke;Paloma T. Lima;D. Lokshtanov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Lokshtanov其他文献
Cops and Robber Game Without Recharging
- DOI:
10.1007/s00224-011-9360-5 - 发表时间:
2011-09-07 - 期刊:
- 影响因子:0.400
- 作者:
Fedor V. Fomin;Petr A. Golovach;Daniel Lokshtanov - 通讯作者:
Daniel Lokshtanov
A 2ℓk Kernel for ℓ-Component Order Connectivity
用于 ℓ-分量阶连接的 2ℓk 内核
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Mithilesh Kumar;Daniel Lokshtanov - 通讯作者:
Daniel Lokshtanov
BASE単一反陽子を用いたCPT不変性の検証
使用 BASE 单反质子验证 CPT 不变性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Marek Cygan;Holger Dell;Daniel Lokshtanov;Daniel Marx;Jesper Nederlof;Yoshio Okamoto;Ramamohan Paturi;Saket Saurabh; Magnus Wahlstrom;Akiyma S.;長濱弘季 - 通讯作者:
長濱弘季
On the weakness of one-way quantum pushdown automata under empty-stack acceptance
论空栈接受下单向量子下推自动机的弱点
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Marek Cygan;Holger Dell;Daniel Lokshtanov;Dániel Marx;Jesper Nederlof;Yoshio Okamoto;Ramamohan Paturi;Saket Saurabh;and Magnus Wahlström;M. Nakanishi - 通讯作者:
M. Nakanishi
Daniel Lokshtanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 34.99万 - 项目类别:
Standard Grant
AF: Small: Communication-Aware Algorithms for Dynamic Allocation of Heterogeneous Resources
AF:小型:用于异构资源动态分配的通信感知算法
- 批准号:
2335187 - 财政年份:2024
- 资助金额:
$ 34.99万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 34.99万 - 项目类别:
Standard Grant
AF: Small: New Challenges and Approaches in Clustering Algorithms
AF:小:聚类算法的新挑战和方法
- 批准号:
2311397 - 财政年份:2023
- 资助金额:
$ 34.99万 - 项目类别:
Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
- 批准号:
2327619 - 财政年份:2023
- 资助金额:
$ 34.99万 - 项目类别:
Standard Grant
SHF: AF: Small: Algorithms and a Code Generator for Faster Stencil Computations
SHF:AF:Small:用于更快模板计算的算法和代码生成器
- 批准号:
2318633 - 财政年份:2023
- 资助金额:
$ 34.99万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithms for Graph-Based Codes
NSF-BSF:AF:小型:基于图形的代码算法
- 批准号:
2133154 - 财政年份:2022
- 资助金额:
$ 34.99万 - 项目类别:
Standard Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
- 批准号:
2224718 - 财政年份:2022
- 资助金额:
$ 34.99万 - 项目类别:
Standard Grant