CNS Core: Small: Design and Evaluation of Methods for Supporting Resilient and High-Availability Elastic Network Slicing

CNS Core:小型:支持弹性和高可用性弹性网络切片的方法设计和评估

基本信息

  • 批准号:
    2008856
  • 负责人:
  • 金额:
    $ 44.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Emerging 5G networks are expected to serve an array of critical applications in different industries such as healthcare, education, transportation, and manufacturing. A major challenge when supporting such a wide range of applications is being able to provide a high degree of availability and maintaining service requirements in the presence of network failures and other constantly changing network conditions. The concept of network slicing in 5G networks is widely viewed as a promising approach for supporting diverse service requirements by enabling the creation of application-specific network slices. A network slice consists of virtual computing and network resources that are tailored to the unique requirements of individual applications. Of particular interest is the concept of elastic network slicing in which the resources allocated to a slice may be dynamically adjusted over time in response to network failures or changes in network conditions. This project aims to address the issues of maintaining high availability and diverse service requirements in 5G networks through the intelligent design, provisioning, and restoration of elastic network slices. The work will result in techniques for providing a robust and resilient network infrastructure that is able support critical applications under dynamic and adverse conditions.The primary goals of this project are to develop methods and techniques for maintaining high availability and diverse service requirements for elastic network slices in 5G networks. To achieve these goals, this project considers a framework that utilizes techniques from deep reinforcement learning and online convex optimization to develop schemes for deploying, provisioning, reconfiguring, and restoring elastic network slices. Specific research problems that will be addressed include 1) machine learning based strategies for the pricing and admission control of elastic network slices while maintaining slice isolation and service requirements, 2) schemes for composing network slices and mapping slices to a physical infrastructure to optimize cost while providing availability guarantees in the presence of infrastructure failures, and 3) schemes for the progressive recovery of virtual and physical infrastructure components after catastrophic failure events. Methodologies will be developed in the context of online convex optimization that will provide a means to obtain theoretical performance bounds for a class of discrete optimization problems. The proposed techniques will be rigorously evaluated through comprehensive analytical models and simulation experiments. Testbed activities will be initiated to evaluate and validate proposed schemes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的5G网络有望在医疗保健,教育,运输和制造等不同行业中提供一系列关键应用。在支持如此广泛的应用程序时,一个主要的挑战是能够在存在网络故障和其他不断变化的网络条件的情况下提供高度的可用性并维持服务要求。 5G网络中网络切片的概念被广泛视为通过启用特定于应用程序特定网络切片来支持各种服务需求的有前途的方法。网络切片由针对各个应用程序的独特要求量身定制的虚拟计算和网络资源组成。 特别有趣的是弹性网络切片的概念,其中分配给切片的资源可以随着时间的流逝而动态调整,以响应网络故障或网络条件的变化。该项目旨在通过智能设计,配置和恢复弹性网络切片来解决5G网络中保持高可用性和多样化服务要求的问题。这项工作将导致提供强大且有弹性的网络基础架构的技术,该基础架构能够在动态和不利条件下支持关键应用程序。该项目的主要目标是开发5G网络中弹性网络切片的高可用性和多样化服务要求的方法和技术。为了实现这些目标,该项目考虑了一个框架,该框架利用了深度强化学习和在线凸优化的技术来开发用于部署,配置,重新配置和恢复弹性网络切片的方案。将要解决的具体研究问题包括1)基于机器学习的策略,用于对弹性网络切片的定价和录取控制,同时保持切片隔离和服务要求,2)用于组合网络切片并将切片映射到物理基础设施的方案,以优化成本,以优化成本,同时提供基础结构较不适当的物理范围的可用性保证,以及为累积的综合策略提供了良好的综合和3)良好的良好的良好复苏,良好的良好是优美的,有利于良好的成本,灾难性故障事件。方法学将在在线凸优化的背景下开发,该方法将为一类离散优化问题提供理论性能范围。提出的技术将通过全面的分析模型和仿真实验进行严格评估。该奖项将开始评估和验证拟议的计划。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Availability-guaranteed slice composition for service function chains in 5G transport networks
A Reinforcement Learning-Based Routing Strategy for Elastic Network Slices
基于强化学习的弹性网络切片路由策略
Reinforcement Learning-Based Multi-Domain Network Slice Provisioning
  • DOI:
    10.1109/icc45041.2023.10278745
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhouxiang Wu;Genya Ishigaki;Riti Gour;Congzhou Li;Feng Mi;Subhash Talluri;Jason P. Jue
  • 通讯作者:
    Zhouxiang Wu;Genya Ishigaki;Riti Gour;Congzhou Li;Feng Mi;Subhash Talluri;Jason P. Jue
Reinforcement Learning-Based Network Slice Resource Allocation for Federated Learning Applications
A Reinforcement Learning-Based Admission Control Strategy for Elastic Network Slices
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Jue其他文献

Jason Jue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Jue', 18)}}的其他基金

NeTS: Medium: Collaborative Research: GOALI: Adaptive and Flexible Spectrum Optical Networking
NeTS:媒介:协作研究:GOALI:自适应和灵活频谱光网络
  • 批准号:
    1302645
  • 财政年份:
    2013
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
NeTS:Small:Design and Analysis of Survivable Multi-Domain Optical Networks
NeTS:Small:可生存多域光网络的设计与分析
  • 批准号:
    0916861
  • 财政年份:
    2009
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
NeTS-NBD Collaborative Research: SOON: Service-Oriented Optical Networks
NeTS-NBD 合作研究:即将推出:面向​​服务的光网络
  • 批准号:
    0627128
  • 财政年份:
    2006
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
Student Travel Support for BroadNets 2004 Conference
BroadNets 2004 会议的学生旅行支持
  • 批准号:
    0439061
  • 财政年份:
    2004
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
NeTS-NR Collaborative Research: Multi-Layer Dual-Homing Survivability for the Next-Generation Internet
NeTS-NR 协作研究:下一代互联网的多层双归属生存能力
  • 批准号:
    0435105
  • 财政年份:
    2004
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
CAREER: Design and Analysis of Photonic Packet-Switched Networks
职业:光子分组交换网络的设计和分析
  • 批准号:
    0133899
  • 财政年份:
    2002
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
  • 批准号:
    2317698
  • 财政年份:
    2023
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了