CNS Core: Small: FLINT: Robust Federated Learning for Internet of Things
CNS 核心:小型:FLINT:物联网的鲁棒联邦学习
基本信息
- 批准号:2008878
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Federated learning enables machine learning on distributed datasets without needing the learner to access directly the datasets owned by respective stakeholders. The Internet of Things (IoT) provides a fertile ground for applying federated learning, where distributed IoT devices produce a plethora of data that are often private. However, IoT devices are vulnerable to environments with inaccurate data samples and malicious attacks, which is a significant challenge for federated learning. Agglomerating data in a federated and robust manner may produce benefits to the economy and society.Objectives of the Robust Federated Learning for Internet of Things (FLINT) project include: (1) Formulate federated learning (FL) in heterogeneous, dynamic IoT environments with unreliable and adversarial clients. (2) Design new FL algorithms that are robust against hostile conditions with benign, unreliable, and malicious clients injecting erroneous or poisonous data. (3) Design novel incentive mechanisms to ensure rational clients gain non-negative utility by contributing training data and resources. (4) Analyze complexity, performance, and theoretical bounds of proposed algorithms. (5) Build an IoT testbed to study the learning performance of robust FL solutions. (6) Simulation experiments on real-world datasets to evaluate performance scalability. The FLINT project will offer graduate and undergrad students a unique opportunity to gain interdisciplinary education in the design of robust FL algorithms for IoT. Research findings will enrich courses on cyber-physical systems and machine learning for IoT. The project will attract women and underrepresented minority students, and attract primary and secondary school students in Science, Technology, Engineering and Mathematics (STEM) disciplines. Dissemination of research results will be by means of the project website, seminars and keynote talks, conference presentations, and publications in top-tier journals and conference proceedings.The FLINT project website (https://tluocs.github.io/FLINT/) will maintain computational codes, models, real world and experimental data for two years after the project period is over. The website will provide two levels of access – Public and Login required – and an account can be created via registration with no charge. An accompanying GitHub repository will make the developed codes and simulation models available to the community. Permission will be granted to use and distribute freely the data and code with due acknowledgement of the copyright notice and the authors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联合学习使机器学习能够在分布式数据集上进行,而不需要学习者直接访问各自利益相关者拥有的数据集。物联网(IoT)为应用联邦学习提供了肥沃的土壤,分布式IoT设备产生了大量通常是私有的数据。然而,物联网设备容易受到具有不准确数据样本和恶意攻击的环境的影响,这对联邦学习来说是一个重大挑战。以联邦和健壮的方式聚集数据可能会对经济和社会产生好处。物联网健壮联邦学习(FLINT)项目的目标包括:(1)在具有不可靠和对抗性客户端的异构动态物联网环境中制定联邦学习(FL)。(2)设计新的FL算法,这些算法在良性、不可靠和恶意客户端注入错误或有毒数据的恶劣条件下具有强大的鲁棒性。(3)设计新颖的激励机制,确保理性客户通过贡献训练数据和资源获得非负效用。(4)分析所提出算法的复杂度、性能和理论界限。(5)构建物联网测试平台,研究强大FL解决方案的学习性能。(6)在真实世界数据集上进行模拟实验,以评估性能可扩展性。FLINT项目将为研究生和本科生提供一个独特的机会,以获得跨学科教育,为物联网设计强大的FL算法。研究结果将丰富物联网的网络物理系统和机器学习课程。该项目将吸引妇女和代表性不足的少数民族学生,并吸引科学、技术、工程和数学学科的中小学生。研究成果的传播将通过项目网站、研讨会和主题演讲、会议演示以及在顶级期刊和会议论文集上发表文章的方式进行。FLINT项目网站(https://tluocs.github.io/FLINT/)将在项目期结束后的两年内维护计算代码、模型、真实的世界和实验数据。该网站将提供两个级别的访问-公共和登录要求-和一个帐户可以通过注册免费创建。附带的GitHub存储库将向社区提供开发的代码和模拟模型。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FedAR+: A Federated Learning Approach to Appliance Recognition with Mislabeled Data in Residential Environments
- DOI:10.1145/3576841.3585921
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Ashish Gupta;Hari Prabhat Gupta;Sajal K. Das
- 通讯作者:Ashish Gupta;Hari Prabhat Gupta;Sajal K. Das
FedHAP: Fast Federated Learning for LEO Constellations using Collaborative HAPs
- DOI:10.1109/wcsp55476.2022.10039157
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Mohamed Elmahallawy;Tie Luo
- 通讯作者:Mohamed Elmahallawy;Tie Luo
Robust Federated Learning against Backdoor Attackers
- DOI:10.1109/infocomwkshps57453.2023.10225922
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Priyesh Ranjan;Ashish Gupta;Federico Coró;Sajal Kumar Das
- 通讯作者:Priyesh Ranjan;Ashish Gupta;Federico Coró;Sajal Kumar Das
Blockchain-Enabled Authenticated Key Agreement Scheme for Mobile Vehicles-Assisted Precision Agricultural IoT Networks
- DOI:10.1109/tifs.2022.3231121
- 发表时间:2023
- 期刊:
- 影响因子:6.8
- 作者:Anusha Vangala;A. Das;Ankush Mitra;Sajal K. Das;Youngho Park
- 通讯作者:Anusha Vangala;A. Das;Ankush Mitra;Sajal K. Das;Youngho Park
AsyncFLEO: Asynchronous Federated Learning for LEO Satellite Constellations with High-Altitude Platforms
- DOI:10.1109/bigdata55660.2022.10021101
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Mohamed Elmahallawy;Tie Luo
- 通讯作者:Mohamed Elmahallawy;Tie Luo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Luo其他文献
Optimization of Lentiviral ß-Globin Vectors in a Forward Orientation to Enhance Therapeutic Effectiveness for Sickle Cell Disease
- DOI:
10.1182/blood-2023-187506 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Jennifer Okalova;Jordan Shields Alexander;Christopher Chambliss;Zhongyu Zhu;Yanping Xie;Matthew Addington-Hall;Oxana Slessareva;Tony Luo;Beatrix Ferencz;Ibeawuchi Oparaocha;Naoya Uchida;John F. Tisdale;Boro Dropulic;H. Trent Spencer;Rimas J Orentas;David R Archer - 通讯作者:
David R Archer
Tony Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
- 批准号:
2322919 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
- 批准号:
2343469 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
- 批准号:
2317698 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
- 批准号:
2233894 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
- 批准号:
2228028 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Redesigning I/O Across Heterogeneous Systems
CNS 核心:小型:跨异构系统重新设计 I/O
- 批准号:
2231724 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant