Collaborative Research: SHF: Small: An Automated Full-Lifecycle Approach for Improving the Development and Use of Static Analysis
合作研究:SHF:小型:改进静态分析开发和使用的自动化全生命周期方法
基本信息
- 批准号:2008905
- 负责人:
- 金额:$ 24.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Because software failures can and do cause severe, even life-threatening losses, effective quality assurance remains a constant concern for software developers. In fact, over the past decades, numerous software analysis techniques have been developed to address this concern. These techniques represent a powerful means of detecting bugs or proving their absence. Despite their theoretical superiority, static program analysis tools have had relatively limited industry adoption. Static analysis tools aiming for practical solutions are forced to approximate, trading off precision (i.e., better modeling to ensure correctness) against performance (i.e., faster analysis). Finding the right balance of the complex tradeoffs between performance and precision when developing and using static analysis tools is extremely challenging. This project seeks to reduce practical barriers to conquering this tradeoff. Successful outcomes of this project are likely to improve static analysis tool adoption rates, and thereby improve the safety, security and functionality of critical software that society depends upon. This project aims to achieve more effective static analysis design and usage through cohesive development and usage lifecycle that is powerfully augmented with automated support. This automated support includes systematic evaluation and generation of benchmarks for static analysis tools, localizing sources of imprecision and performance bottlenecks, configuring tool settings that are likely to produce correct and timely results, using machine learning approaches to identify and filter false positives, and integrating these improvements into a demonstration system that leverages information and experiences coming from both tool developers and tool users. This augmented and automated lifecycle will identify frequently occurring code patterns that significantly affect performance/precision tradeoffs in specific tools, allowing tool developers to quickly improve their tools. It will also enable tools designed to customize their behavior and analysis approaches to specific target programs. At the same time, this will provide static analysis tool users with automated support for tuning tool configurations to quickly get more effective results. This is supported by automated classification of tool error reports, reducing effort wasted investigating false positives. These improvements used in concert with each other will result in greatly improved static analysis tools, and much-increased use of these tools in analyzing real-world software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于软件故障可能并且确实会导致严重甚至威胁生命的损失,因此对于软件开发人员来说,有效的质量保证仍然是一个不断关注的问题。实际上,在过去的几十年中,已经开发了许多软件分析技术来解决这一问题。这些技术代表了检测错误或证明其缺席的强大手段。尽管具有理论上的优势,但静态程序分析工具的行业采用却相对有限。针对实用解决方案的静态分析工具被迫近似近似,即在绩效(即更快的分析速度)(即,更好地建模以确保正确性以确保正确性)。在开发和使用静态分析工具时,在性能和精度之间找到复杂的权衡取平衡是极具挑战性的。该项目旨在减少征服这种权衡的实际障碍。该项目的成功结果可能会提高静态分析工具的采用率,从而提高社会依赖的关键软件的安全性,安全性和功能。该项目旨在通过具有自动支持的有力增强的凝聚力开发和使用寿命类别来实现更有效的静态分析设计和使用。这种自动化支持包括用于静态分析工具的系统评估和基准生成,本地化不精确和性能瓶颈来源,配置可能会产生正确且及时的结果的工具设置,并使用机器学习方法来识别和过滤误差误点,并将这些改进整合到来自工具和开发人员的演示系统中,并将这些改进整合到同时的工具中。这种增强和自动化的生命周期将确定经常发生的代码模式,这些模式会严重影响特定工具的性能/精确折衷,从而使工具开发人员能够快速改善其工具。它还将启用旨在自定义特定目标程序的行为和分析方法的工具。同时,这将为静态分析工具用户提供对调整工具配置的自动支持,以快速获得更有效的结果。这是通过对工具错误报告的自动分类来支持的,从而减少了浪费的努力调查误报。相互协同使用的这些改进将极大地改善静态分析工具,并在分析现实世界软件中使用这些工具的使用极大地使用。该奖项反映了NSF的法定任务,并认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ECSTATIC: Automatic Configuration-Aware Testing and Debugging of Static Analysis Tools
- DOI:10.1145/3597926.3604918
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Austin Mordahl;Dakota Soles;Miao Miao-Miao;Zenong Zhang;Shiyi Wei
- 通讯作者:Austin Mordahl;Dakota Soles;Miao Miao-Miao;Zenong Zhang;Shiyi Wei
An empirical assessment of machine learning approaches for triaging reports of static analysis tools
- DOI:10.1007/s10664-022-10253-z
- 发表时间:2023-03-01
- 期刊:
- 影响因子:4.1
- 作者:Yerramreddy,Sai;Mordahl,Austin;Porter,Adam A.
- 通讯作者:Porter,Adam A.
SATune: A Study-Driven Auto-Tuning Approach for Configurable Software Verification Tools
- DOI:10.1109/ase51524.2021.9678761
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Ugur Koc;Austin Mordahl;Shiyi Wei;J. Foster;A. Porter
- 通讯作者:Ugur Koc;Austin Mordahl;Shiyi Wei;J. Foster;A. Porter
The impact of tool configuration spaces on the evaluation of configurable taint analysis for Android
- DOI:10.1145/3460319.3464823
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Austin Mordahl;Shiyi Wei
- 通讯作者:Austin Mordahl;Shiyi Wei
ECSTATIC: An Extensible Framework for Testing and Debugging Configurable Static Analysis
- DOI:10.1109/icse48619.2023.00056
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Austin Mordahl;Zenong Zhang;Dakota Soles;Shiyi Wei
- 通讯作者:Austin Mordahl;Zenong Zhang;Dakota Soles;Shiyi Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiyi Wei其他文献
Practical blended taint analysis for JavaScript
JavaScript 实用混合污点分析
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Shiyi Wei;B. Ryder - 通讯作者:
B. Ryder
Adaptive Context-sensitive Analysis for JavaScript
JavaScript 的自适应上下文相关分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shiyi Wei;B. Ryder - 通讯作者:
B. Ryder
RTL-Spec: RTL Spectrum Analysis for Security Bug Localization
RTL-Spec:用于安全漏洞定位的 RTL 频谱分析
- DOI:
10.1109/host55342.2024.10545408 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Samit S. Miftah;Shamik Kundu;Austin Mordahl;Shiyi Wei;Kanad Basu - 通讯作者:
Kanad Basu
A Practical Blended Analysis for Dynamic Features in JavaScript
JavaScript 中动态特征的实用混合分析
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Shiyi Wei;B. Ryder - 通讯作者:
B. Ryder
Evaluating Design Tradeoffs in Numeric Static Analysis for Java
评估 Java 数值静态分析中的设计权衡
- DOI:
10.1007/978-3-319-89884-1_23 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shiyi Wei;Piotr (Peter) Mardziel;Andrew Ruef;J. Foster;M. Hicks - 通讯作者:
M. Hicks
Shiyi Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiyi Wei', 18)}}的其他基金
CAREER: Improving the Practicality of Configurable Static Analysis Tools through Analysis, Testing, Refinement and Adaptation
职业:通过分析、测试、细化和适应提高可配置静态分析工具的实用性
- 批准号:
2047682 - 财政年份:2021
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
SHF: Small: Automated Fine-Grained Requirements Traceability
SHF:小型:自动化细粒度需求可追溯性
- 批准号:
1910976 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Static Analysis Infrastructure for Variability-Aware Bug Detection and Translation of Highly-Configurable Software Systems
SHF:小型:协作研究:用于高度可配置软件系统的可变性缺陷检测和转换的静态分析基础设施
- 批准号:
1816951 - 财政年份:2018
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant