Program Optimization with Data-Specific Compilation
通过特定于数据的编译来优化程序
基本信息
- 批准号:2009020
- 负责人:
- 金额:$ 44.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Irregular data structures, as exemplified with sparse matrices, are essential in modern computing: they are central in numerous scientific applications, ranging from physics simulation to graph processing. A key challenge is to deliver high-performance implementations for computations on irregular structures, which typically use additional arrays to store explicitly the coordinates of non-zero elements in the structure. The project's novelties address the next opportunity for code customization by developing a new kind of data-specific compilation approach that is customized to the unique sparsity pattern in the input data structures. This project designs and fully automates data-specific compilation techniques that can discover and exploit hidden regularity in sparse structures, reducing the development cost to produce high-performance implementations. The project's impacts also include novel theoretical results and practical algorithms to model irregular data structures as a union of (piecewise-)regular structures, exploiting this representation for increased application performance. In machine learning, sparsely connected neural networks can directly benefit from this data-specific compilation approach, enabling the development of improved inference implementations for deep networks.Specifically, the project develops new theory and algorithms to represent sparse data structures using unions of hierarchical polyhedra: the list of non-zero coordinates can be compressed into specialized and more compact affine functions that, when evaluated, would generate exactly the input list of coordinates. The investigators target a range of different hardware accelerators based on SIMD engine principles, and facilitate performance portability by using cost-driven yet machine-independent algorithms to search for optimized implementations. Tools produced are made publicly available as open-source BSD-licensed software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
不规则数据结构,如稀疏矩阵的例子,在现代计算中是必不可少的:它们是许多科学应用的核心,从物理模拟到图形处理。一个关键的挑战是为不规则结构的计算提供高性能实现,这通常使用额外的数组来显式存储结构中非零元素的坐标。该项目的新奇之处是通过开发一种新的特定于数据的编译方法来解决代码定制的下一个机会,这种编译方法是根据输入数据结构中唯一的稀疏模式进行定制的。该项目设计并完全自动化了特定于数据的编译技术,这些技术可以发现和利用稀疏结构中隐藏的规律,从而降低开发成本以产生高性能实现。该项目的影响还包括新的理论结果和实用算法,将不规则数据结构建模为(分段)规则结构的联合,利用这种表示来提高应用程序的性能。在机器学习中,稀疏连接的神经网络可以直接受益于这种特定于数据的编译方法,从而能够为深度网络开发改进的推理实现。具体来说,该项目开发了新的理论和算法,使用分层多面体的联合来表示稀疏数据结构:非零坐标列表可以压缩成专门的和更紧凑的仿射函数,当评估时,将精确地生成坐标的输入列表。研究人员针对一系列基于SIMD引擎原理的不同硬件加速器,并通过使用成本驱动但与机器无关的算法来搜索优化实现,从而促进性能可移植性。生成的工具作为开源bsd许可软件公开提供。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations
- DOI:10.1145/3559009.3569668
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Marcos Horro;L. Pouchet;Gabriel Rodríguez;J. Touriño
- 通讯作者:Marcos Horro;L. Pouchet;Gabriel Rodríguez;J. Touriño
MARTA: Multi-configuration Assembly pRofiler and Toolkit for performance Analysis
MARTA:用于性能分析的多配置装配配置文件和工具包
- DOI:10.1109/ispass55109.2022.00008
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Horro, Marcos;Pouchet, Louis-Noel;RodriDguez, Gabriel;Tourino, Juan
- 通讯作者:Tourino, Juan
FOURST: A code generator for FFT-based fast stencil computations
第四:用于基于 FFT 的快速模板计算的代码生成器
- DOI:10.1109/ispass55109.2022.00010
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ahmad, Zafar;Javanmard, Mohammad Mahdi;Croisdale, Gregory;Gregory, Aaron;Ganapathi, Pramod;Pouchet, Louis-Noel;Chowdhury, Rezaul
- 通讯作者:Chowdhury, Rezaul
Representing Integer Sequences Using Piecewise-Affine Loops
使用分段仿射循环表示整数序列
- DOI:10.3390/math9192368
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Rodríguez, Gabriel;Pouchet, Louis-Noël;Touriño, Juan
- 通讯作者:Touriño, Juan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Louis-Noel Pouchet其他文献
Louis-Noel Pouchet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Louis-Noel Pouchet', 18)}}的其他基金
CAREER: Staging Compilers for Heterogeneous Platforms
职业:异构平台的暂存编译器
- 批准号:
1750399 - 财政年份:2018
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
SPX: Collaborative Research: Dependence Programming and Optimization of Scalable Irregular Numerical Applications
SPX:协作研究:可扩展不规则数值应用的依赖编程和优化
- 批准号:
1725611 - 财政年份:2017
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
SHF:Small:Scalable Scheduling for Program Transformations in Heterogeneous Computing
SHF:Small:异构计算中程序转换的可扩展调度
- 批准号:
1731612 - 财政年份:2016
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
SHF:Small:Scalable Scheduling for Program Transformations in Heterogeneous Computing
SHF:Small:异构计算中程序转换的可扩展调度
- 批准号:
1524127 - 财政年份:2014
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
SHF:Small:Scalable Scheduling for Program Transformations in Heterogeneous Computing
SHF:Small:异构计算中程序转换的可扩展调度
- 批准号:
1321147 - 财政年份:2013
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
RAIDO: Reliable AI and Data Optimization
RAIDO:可靠的人工智能和数据优化
- 批准号:
10099264 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
EU-Funded
RAIDO: Reliable AI and Data Optimization
RAIDO:可靠的人工智能和数据优化
- 批准号:
10093336 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
EU-Funded
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
- 批准号:
10735863 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
- 批准号:
490488 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Operating Grants
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
- 批准号:
2226347 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
- 批准号:
2414946 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant














{{item.name}}会员




