Interacting Particle Systems and Mean-field games Workshops
交互粒子系统和平均场游戏研讨会
基本信息
- 批准号:2207572
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will support participation of graduate students, post-doctoral researchers and early career researchers from the United States of America in one of the workshops "Interacting Particle Systems and Hydrodynamic Limits" to be held from March 13-27, 2022, or the "Mean-Field Games" workshop to be held from April 10-17, 2022 at the Centre de Recherches Mathematiques (CRM) in Montreal, Canada. Both workshops are part of a larger interdisciplinary thematic program on "Probabilities and PDEs" held at CRM from January to July 2022. Probability theory and the theory of partial differential equations (PDEs) are important areas of mathematics with substantial overlap in their methods and goals. In both fields, one of the major aims is to provide accurate models of how engineered, physical, chemical and biological systems change over time. Probability frequently focuses on how systems which are random and/or unpredictable at the microscopic level can become highly ordered at the macroscopic level. PDE theory frequently focuses on the spatial and temporal evolution of such macroscopic systems. For decades there has been a fruitful interplay between the two fields probability and PDEs, with both intuitions and mathematical techniques from each area finding application in the other. This project focuses on two aspects of that interplay, which are both related to how probabilistic particle systems resemble PDEs when sufficiently "zoomed out". One of these, the area of mean-field games, describes scaling limits of strategically controlled interacting agents evolving as diffusions coupled via a graph structure (often the complete graph). The second, interacting particle systems and hydrodynamic limits, typically focuses on PDE approximations for particle systems in more geometric settings, such as lattices (on taking an appropriate fine-mesh limit in both space and time). The goal of this project is to support the participation of US-based junior researchers and researchers from underrepresented groups in a thematic semester on Probability and PDEs (and in particular their participation in two workshops, on the subjects of mean-field games and interacting particle systems), taking place in the first half of 2022 at the Centre de Recherches Mathématiques in Montréal, Canada. The thematic semester website is maintained at http://www.crm.umontreal.ca/2022/Probab22/index_e.php the Interacting Particle Systems and Hydrodynamic Limits Workshop at http://www.crm.umontreal.ca/2022/Particules22/index_e.php and the Mean-Field Games Workshop at http://www.crm.umontreal.ca/2022/Games22/index_e.php.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将支持研究生,博士后研究人员和来自美利坚合众国的早期职业研究人员参加的一个研讨会之一,将于3月13日至27日,2022年3月13日至27日将于2022年4月10日至17日在2022年4月10日至17日在De Recherches Matherematequique shorematique crm crm crm crm crm crm crm crm horm inshop举行。这两个研讨会都是从2022年1月至7月在CRM举行的有关“概率和PDE”的较大跨学科主题计划的一部分。概率理论和部分微分方程(PDES)是数学的重要领域,其方法和目标是实质性重叠的。在这两个领域中,主要目的之一是提供准确的模型,以随着时间的流逝而设计,物理,化学和生物系统如何变化。概率通常集中在微观水平上如何随机和/或不可预测的系统如何在宏观级别上升。 PDE理论经常着重于此类宏观系统的空间和临时演变。几十年来,两个字段的概率和PDE之间一直存在着富有成果的相互作用,以及每个区域发现应用程序中的直觉和数学技术。该项目的重点是该相互作用的两个方面,这两者都与概率粒子系统非常类似于PDE时,这两个方面都非常“放大”。其中之一是平均场游戏的区域,描述了策略控制的相互作用代理的缩放限制,因为差异是通过图形结构(通常是完整的图)结合的。第二个相互作用的粒子系统和流体动力限制通常集中于更几何设置(例如晶格)中粒子系统的PDE近似(在时空和时间上都有适当的细网限制)。 The goal of this project is to support the participation of US-based junior researchers and researchers from underrepresented groups in a thematic semester on Probability and PDEs (and in particular their participation in two workshops, on the subjects of mean-field games and interacting particle systems), taking place in the first half of 2022 at the Centre de Recherches Mathématiques in Montréal, Canada. The thematic semester website is maintained at http://www.crm.umontreal.ca/2022/Probab22/index_e.php the Interacting Particle Systems and Hydrodynamic Limits Workshop at http://www.crm.umontreal.ca/2022/Particules22/index_e.php and the Mean-Field Games Workshop at http://www.crm.umontreal.ca/2022/games22/index_e.php.this奖反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的评估来评估的审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kavita Ramanan其他文献
A Mimicking Theorem for processes driven by fractional Brownian motion
分数布朗运动驱动过程的拟态定理
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kevin Hu;Kavita Ramanan;William Salkeld - 通讯作者:
William Salkeld
The $\ell_r$-Levy-Grothendieck problem and $r\rightarrow p$ norms of Levy matrices
$ell_r$-Levy-Grothendieck 问题和 Levy 矩阵的 $r
ightarrow p$ 范数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kavita Ramanan;Xiaoyu Xie - 通讯作者:
Xiaoyu Xie
Long-Time Limit of Nonlinearly Coupled Measure-Valued Equations that Model Many-Server Queues with Reneging
非线性耦合测值方程的长期限制,用于对多服务器队列进行重新更新建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
Rami Atar;W. Kang;H. Kaspi;Kavita Ramanan - 通讯作者:
Kavita Ramanan
Interacting stochastic processes on sparse random graphs
稀疏随机图上的交互随机过程
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kavita Ramanan - 通讯作者:
Kavita Ramanan
On the large deviation rate function for marked sparse random graphs
关于有标记稀疏随机图的大偏差率函数
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kavita Ramanan;S. Yasodharan - 通讯作者:
S. Yasodharan
Kavita Ramanan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kavita Ramanan', 18)}}的其他基金
Rare Events and High-Dimensional Stochastic Systems
稀有事件和高维随机系统
- 批准号:
2246838 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Analysis of High-Dimensional Stochastic Systems
高维随机系统分析
- 批准号:
1954351 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
2018 Stochastic Networks Conference and Summer School in Applied Probability
2018年随机网络会议暨应用概率暑期学校
- 批准号:
1822084 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
"High-dimensional random phenomena and rare events"
《高维随机现象和罕见事件》
- 批准号:
1713032 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Women's Intellectual Networking Research Symposium
女性知识网络研究研讨会
- 批准号:
1727318 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Rigorous Approximations of Stochastic Network Dynamics, with Applications to Real-World Networks
随机网络动力学的严格近似及其在现实世界网络中的应用
- 批准号:
1538706 - 财政年份:2015
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Problems at the Interface of Stochastics and Analysis
随机学与分析的交叉问题
- 批准号:
1407504 - 财政年份:2014
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Stability, Sensitivity and Optimization of Stochastic Systems
随机系统的稳定性、敏感性和优化
- 批准号:
1234100 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Travel Grant for the Applied Probability Society Conference
应用概率学会会议旅费补助金
- 批准号:
1114608 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Analysis of Large-Scale Stochastic Systems
大规模随机系统分析
- 批准号:
1052750 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似国自然基金
磁有序系统的对称群与新型准粒子
- 批准号:12374166
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
激光增材制造粒子加速器真空系统复杂部件材料真空性能优化研究
- 批准号:12375321
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
格点和完全图上的交互粒子系统的流体动力学及相关
- 批准号:12371142
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
- 批准号:12305303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高寒环境下高速列车制动系统摩擦粒子结构设计及其减振降噪机理研究
- 批准号:52305209
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
- 批准号:
2348756 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
- 批准号:
2153958 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant