Mathematical Aspects of Materials Science and Prediction with Expert Advice

材料科学的数学方面和专家建议的预测

基本信息

  • 批准号:
    2009746
  • 负责人:
  • 金额:
    $ 19.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project has two main thrusts. The first is a topic at the interface between mathematics and materials science, involving a class of artificial materials known as "Maxwell lattices." This work will study how the macroscopic mechanical properties of a Maxwell lattice are determined by its microscopic structure. An improved understanding of the relationship between microstructure and macroscopic behavior is expected to facilitate the design of better artificial materials. The project's second thrust lies at the interface between mathematics and data science, and is thus aligned with one of NSF's ten Big Ideas ("Harnessing the Data Revolution"). This work will focus on a problem of sequential decision making, in which data that arrive incrementally must be assembled into a coherent whole despite inconsistencies; the specific focus will be a recently-introduced approach to low-rank matrix completion. In both areas, the project will involve PhD students. The junior scientists involved in this research will gain experience and breadth in both mathematics and a key application area.The project's first thrust will explore the nonlinear mechanics of two-dimensional "Maxwell lattices." These are, by definition, periodic lattice structures in which the average number of edges meeting a node is four; the well-known Kagome lattice is a favorite example. Maxwell lattices are interesting because they are, in most cases, elastically degenerate. A large literature has developed concerning their linearly elastic behavior; however the nonlinear mechanics of these structures is still poorly understood, even for deformations with little or no strain. The project's first thrust will use methods from nonlinear homogenization and the calculus of variations to explore the nonlinear mechanics of Maxwell lattices. The project's second thrust will explore a recently introduced approach to low-rank matrix completion. This approach relies on a two-person, zero-sum, sequential game analogous to the model of online machine learning known as "prediction with expert advice." The principal investigator recently used methods from optimal control to achieve fresh insight concerning prediction with expert advice; it is expected that control-based methods will also be useful for matrix completion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目有两个主要目标。第一个是数学和材料科学之间的接口,涉及一类被称为“麦克斯韦晶格”的人造材料。“这项工作将研究麦克斯韦晶格的宏观力学性质如何由其微观结构决定。对微观结构和宏观行为之间关系的更好理解有望促进更好的人造材料的设计。该项目的第二个重点在于数学和数据科学之间的接口,因此与NSF的十大理念之一(“利用数据革命”)保持一致。这项工作将集中在一个问题的顺序决策,其中的数据,增量到达必须组装成一个连贯的整体,尽管不一致,具体的重点将是最近推出的方法,低秩矩阵完成。 在这两个领域,该项目将涉及博士生。参与这项研究的年轻科学家将获得数学和关键应用领域的经验和广度。该项目的第一个推力将探索二维“麦克斯韦晶格”的非线性力学。根据定义,这些是周期性的晶格结构,其中与节点相遇的边的平均数量是四个;众所周知的Kagome晶格是一个最受欢迎的例子。麦克斯韦晶格是有趣的,因为它们在大多数情况下是弹性退化的。大量的文献已经开发了关于他们的线性弹性行为,然而,这些结构的非线性力学仍然知之甚少,即使是变形很少或没有应变。该项目的第一个重点将使用非线性均匀化和变分法的方法来探索麦克斯韦晶格的非线性力学。该项目的第二个重点是探索最近推出的低秩矩阵完成方法。这种方法依赖于一个两人、零和、连续的游戏,类似于被称为“专家建议预测”的在线机器学习模型。“首席研究员最近使用最优控制的方法来获得关于专家建议的预测的新见解;预计基于控制的方法也将有助于矩阵完成。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some results on the Guest–Hutchinson modes and periodic mechanisms of the Kagome lattice metamaterial
Kagome晶格超材料Guest-Hutchinson模式和周期机制的一些结果
Energy minimizing twinning with variable volume fraction, for two nonlinear elastic phases with a single rank-one connection
对于具有单个一级连接的两个非线性弹性相,具有可变体积分数的能量最小化孪晶
An Energy Minimization Approach to Twinning with Variable Volume Fraction
变体积分数孪晶的能量最小化方法
  • DOI:
    10.1007/s10659-022-09952-x
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Conti, Sergio;Kohn, Robert V.;Misiats, Oleksandr
  • 通讯作者:
    Misiats, Oleksandr
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Kohn其他文献

Obsessive Compulsive Disorders
强迫症
  • DOI:
    10.1016/b0-12-370870-2/00141-4
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Robert Kohn;A. G. Yip;M. Mancebo
  • 通讯作者:
    M. Mancebo
Contextual directed acyclic graphs
上下文有向无环图
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Thompson;Edwin V. Bonilla;Robert Kohn
  • 通讯作者:
    Robert Kohn
Vulnerability of Jews to affective disorders.
犹太人容易患情感障碍。
  • DOI:
    10.1176/ajp.154.7.941
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Itzhak Levav;Robert Kohn;Jacqueline M. Golding;Myrna M. Weissman
  • 通讯作者:
    Myrna M. Weissman
Bayesian Semiparametric Regression : An Expositionand Application to Print Advertising
贝叶斯半参数回归:平面广告的阐述和应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    DataMichael Smith;Sharat K. Mathur;Robert Kohn
  • 通讯作者:
    Robert Kohn
Attitudes of Psychiatry Residents Toward a Strike by Nursing Staff
  • DOI:
    10.1007/bf03341302
  • 发表时间:
    2014-01-15
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Robert Kohn;Ronald M. Wintrob
  • 通讯作者:
    Ronald M. Wintrob

Robert Kohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Kohn', 18)}}的其他基金

DMREF: Adaptive Fine-Scale Structure Design: From Theory to Fabrication
DMREF:自适应精细结构设计:从理论到制造
  • 批准号:
    1436591
  • 财政年份:
    2014
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Mathematical problems from materials science
材料科学中的数学问题
  • 批准号:
    1311833
  • 财政年份:
    2013
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Mathematical Problems from Materials Science and Finance
材料科学与金融数学问题
  • 批准号:
    0807347
  • 财政年份:
    2008
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Mathematical Problems from Materials Science
材料科学中的数学问题
  • 批准号:
    0313744
  • 财政年份:
    2003
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Modeling, Analysis, and Simulation of Photonic Microstructures
光子微结构的建模、分析和仿真
  • 批准号:
    0313890
  • 财政年份:
    2003
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Focused Research Group: Analysis and Simulation of Magnetic Devices
重点研究组:磁性器件分析与仿真
  • 批准号:
    0101439
  • 财政年份:
    2001
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Mathematical Problems from Materials Science
材料科学中的数学问题
  • 批准号:
    0073047
  • 财政年份:
    2000
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Microstructure and Macroscopic Behavior
数学科学:微观结构和宏观行为
  • 批准号:
    9402763
  • 财政年份:
    1994
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mathematical Problems from Materials Sciences
数学科学:材料科学中的数学问题
  • 批准号:
    9404376
  • 财政年份:
    1994
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Elastodynamic Modelling of Stress Driven Phase Boundary Motion
数学科学:应力驱动相边界运动的弹性动力学建模
  • 批准号:
    9217151
  • 财政年份:
    1993
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Physical Chemistry Aspects of Liquid Metal Alloys, Molten Oxides and Waste Materials
液态金属合金、熔融氧化物和废料的物理化学方面
  • 批准号:
    RGPIN-2020-05960
  • 财政年份:
    2022
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Discovery Grants Program - Individual
Physical Chemistry Aspects of Liquid Metal Alloys, Molten Oxides and Waste Materials
液态金属合金、熔融氧化物和废料的物理化学方面
  • 批准号:
    RGPIN-2020-05960
  • 财政年份:
    2021
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Discovery Grants Program - Individual
Physical Chemistry Aspects of Liquid Metal Alloys, Molten Oxides and Waste Materials
液态金属合金、熔融氧化物和废料的物理化学方面
  • 批准号:
    RGPIN-2020-05960
  • 财政年份:
    2020
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Discovery Grants Program - Individual
Symposium on Mathematical Aspects of Materials Science - Modeling, Analysis, and Computations 2019
材料科学数学方面研讨会 - 建模、分析和计算 2019
  • 批准号:
    1848599
  • 财政年份:
    2019
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Mechanistic aspects of electrocatalysis using metal oxide and sulphide electrode materials
使用金属氧化物和硫化物电极材料的电催化的机理
  • 批准号:
    2088628
  • 财政年份:
    2018
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Studentship
Novel Electrode Materials Based Zn-Air Batteries for Energy Storage: From Fundamental Aspects to System Engineering
用于储能的新型电极材料锌空气电池:从基础方面到系统工程
  • 批准号:
    339689134
  • 财政年份:
    2017
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Research Grants
Novel Electrode Materials Based Zn-Air Batteries for Energy Storage: From Fundamental Aspects to System Engineering
用于储能的新型电极材料锌空气电池:从基础方面到系统工程
  • 批准号:
    349887056
  • 财政年份:
    2017
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Research Grants
Production and nutritional aspects of fat containing skeletal muscles using food materials to improve insulin resistance
使用食品原料改善胰岛素抵抗的含脂肪骨骼肌的生产和营养方面
  • 批准号:
    16K21349
  • 财政年份:
    2016
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on the ancient aspects of Tokyo dialect(Syutoken dialect)by excavation and collection of audio materials
通过音频资料的挖掘和收集研究东京方言(首都圈方言)的古代面貌
  • 批准号:
    16K02736
  • 财政年份:
    2016
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-SIAM Symposium on the Mathematical and Computational Aspects of Materials Science
NSF-SIAM 关于材料科学的数学和计算方面的研讨会
  • 批准号:
    1461829
  • 财政年份:
    2015
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了