Novel Electrode Materials Based Zn-Air Batteries for Energy Storage: From Fundamental Aspects to System Engineering

用于储能的新型电极材料锌空气电池:从基础方面到系统工程

基本信息

项目摘要

Metal-air batteries (MAB) and especially zinc-air batteries (ZABs) have attracted much attention as promising electrochemical energy storage techniques because of their high energy density, low cost and high safety. The technical application of ZABs is hindered, however, by basic problems such as (i) the lack of suitable bi-functional oxygen reduction/evolution (ORR/OER) catalysts, possibly combined with novel gas diffusion electrode structures, (ii) dendrite formation during Zn deposition (charging) on the Zn anode, leading to short-circuiting of the ZAB, and (iii) deficits in the mass/heat management of the battery required to sustain a long cyclinglife. These problems are addressed in the present project by combining the preparation, systematic modification and in situ characterization of realistic bi-functional ORR/OER catalyst materials and of functional zinc anodes with experimental studies of structurally/ chemically well-defined model electrodes and the theoretical description based on density functional theory adapted to an electrochemical environment. Anion or cation doped spinel oxides are proposed as efficient, low cost bi-functional ORR/OER catalysts, as they allow us to vary the chemical properties of the active centers (metal surface ions) in different ways, as required for bi-functional catalysts active for ORR and OER. For an improved gas/liquid mass transport a novel porous gas diffusion electrode will be designed, where the bi-functional catalyst is loaded on a Ni foam whose hydrophobicity is optimized by a hydrophobic polypyrrole film. Zinc dendrite formation at the anode shall be addressed by preparing porous shell confined Zn grains to inhibit the diffusion of Zn2+ ions and by adding specifically adsorbed ions to suppress the growth of Zn dendrites. This will be accompanied by identifying optimized operating conditions and technical electrode structures such as porous oxygen electrodes on the basis of technical simulations, and by optimizing the battery design with respect to mass and heat transport. The results of this strategy will be validated in half-cell measurements and full cell battery tests.
金属-空气电池(MAB),特别是锌-空气电池(ZAB),因其能量密度高、成本低、安全性好等优点,成为一种极具发展前景的电化学储能技术。 然而,ZAB的技术应用受到基本问题的阻碍,所述基本问题例如(i)缺乏合适的双功能氧还原/析氧(ORR/OER)催化剂,其可能与新型气体扩散电极结构结合,(ii)在Zn沉积过程中的枝晶形成,(iii)在Zn沉积过程中的枝晶形成,(iv)在Zn(充电),导致ZAB短路,以及(iii)维持长循环寿命所需的电池的质量/热管理的缺陷。这些问题在本项目中得到解决,通过结合制备,系统的修改和原位表征的现实的双功能ORR/OER催化剂材料和功能锌阳极的结构/化学定义良好的模型电极和理论描述的实验研究的基础上,密度泛函理论适应于电化学环境。阴离子或阳离子掺杂的尖晶石氧化物被提出作为有效的、低成本的双功能ORR/OER催化剂,因为它们允许我们以不同的方式改变活性中心(金属表面离子)的化学性质,如对ORR和OER具有活性的双功能催化剂所要求的。为了改善气/液传质,将设计一种新型多孔气体扩散电极,其中双功能催化剂负载在其疏水性通过疏水聚吡咯膜优化的Ni泡沫上。阳极处的锌枝晶形成应通过制备多孔壳限制的Zn晶粒以抑制Zn 2+离子的扩散和通过添加特定吸附的离子以抑制Zn枝晶的生长来解决。这将伴随着在技术模拟的基础上确定优化的操作条件和技术电极结构,如多孔氧电极,以及优化电池设计的质量和热量传输。该策略的结果将在半电池测量和全电池测试中得到验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Axel Groß其他文献

Professor Dr. Axel Groß的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Axel Groß', 18)}}的其他基金

Enhancing capacity and rechargeability of lithium-air batteries by precise control of reaction zonedimensions and mediators
通过精确控制反应区尺寸和介体提高锂空气电池的容量和可充电性
  • 批准号:
    405821363
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Improved atomistic first-principles description of structures and processes at electrochemical electrode/electrolyte interfaces
改进了电化学电极/电解质界面结构和过程的原子第一原理描述
  • 批准号:
    428022078
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical Study Addressing the (Meta-)Stability of Bimetallic Nanostructures
双金属纳米结构(亚)稳定性的理论研究
  • 批准号:
    272517120
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ab initio molecular dynamics approach to adsorption processes of complex molecules
复杂分子吸附过程的从头算分子动力学方法
  • 批准号:
    213951782
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Central Project
中央项目
  • 批准号:
    188316806
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Units
Theoretical description of the electrode potential
电极电势的理论描述
  • 批准号:
    183377694
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Units
Electric field effects at metal-semiconductor and semiconductor-water interfaces
金属-半导体和半导体-水界面的电场效应
  • 批准号:
    36841936
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ab initio description of non-adiabatic effects in dissociative adsorption at surfaces
表面解离吸附非绝热效应的从头算
  • 批准号:
    5454533
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Elektrische Feldeffekte in der Wechselwirkung von Molekülen mit Grenzflächen
分子与界面相互作用中的电场效应
  • 批准号:
    5430189
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adsorption auf strukturierten Metalloberflächen
吸附在结构化金属表面上
  • 批准号:
    5394102
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Stoichiometry, hierarchical arrangement and kinetics of electrode reactions at novel multi-components electrocatalytic materials
新型多组分电催化材料电极反应的化学计量、分级排列和动力学
  • 批准号:
    RGPIN-2019-05975
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of Novel Electrode Materials for Reducing Environmental Impact in Molten Salt Electrolysis
减少熔盐电解环境影响的新型电极材料的研究
  • 批准号:
    22K04759
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kinetics, stoichiometry and product distributions of electrode reactions at novel electrocatalytic materials
新型电催化材料电极反应的动力学、化学计量和产物分布
  • 批准号:
    RGPIN-2017-04260
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Novel Transparent, Ultra-soft Neuroelectrode Arrays Based on Nanomeshing Conventional Electrode Materials SUPPLEMENT
基于纳米网格的新型透明、超软神经电极阵列传统电极材料补充
  • 批准号:
    10579663
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
High-pressure synthesis of novel iron-containing fluorides /oxyfluorides as electrode materials for energy storage
高压合成新型含铁氟化物/氟氧化物作为储能电极材料
  • 批准号:
    21F21727
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Stoichiometry, hierarchical arrangement and kinetics of electrode reactions at novel multi-components electrocatalytic materials
新型多组分电催化材料电极反应的化学计量、分级排列和动力学
  • 批准号:
    RGPIN-2019-05975
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Kinetics, stoichiometry and product distributions of electrode reactions at novel electrocatalytic materials
新型电催化材料电极反应的动力学、化学计量和产物分布
  • 批准号:
    RGPIN-2017-04260
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Stoichiometry, hierarchical arrangement and kinetics of electrode reactions at novel multi-components electrocatalytic materials
新型多组分电催化材料电极反应的化学计量、分级排列和动力学
  • 批准号:
    RGPIN-2019-05975
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
High energy-density positive materials using novel electrode reactions by controlling oxygen anions
通过控制氧阴离子使用新型电极反应的高能量密度正极材料
  • 批准号:
    20H02846
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel Transparent, Ultra-soft Neuroelectrode Arrays Based on Nanomeshing Conventional Electrode Materials
基于纳米网格传统电极材料的新型透明、超软神经电极阵列
  • 批准号:
    10541287
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了