Collaborative Research: Enabling Machine Learning based Cooperative Perception with mmWave Communication for Autonomous Vehicle Safety
协作研究:通过毫米波通信实现基于机器学习的协作感知,以实现自动驾驶汽车安全
基本信息
- 批准号:2010332
- 负责人:
- 金额:$ 24.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
By understanding what and how data are exchanged among autonomous vehicles, from a machine learning perspective, it is possible to realize precise cooperative perception on autonomous vehicles, enabling massive amounts of sensor information to be shared amongst vehicles. Such an advance can be extremely useful to extend the line of sight and field of view of autonomous vehicles, which otherwise suffers from blind spots and occlusions. The extended field of view on autonomous vehicles will be beneficial at times when there are occlusions preventing a complete perception of the environment. This increase in situational awareness promotes safe driving over a narrow scope and improves traffic flow efficiency over an extended scope. The proposed research work will not only change the way people think about the perception system on autonomous vehicles but could also open up opportunities to design novel systems that were previously inconceivable. This project offers a wide variety of research activities from data collection, algorithm design, system development, and in-the-field evaluation, which will be attractive to students with various backgrounds and goals. Undergraduate and graduate students will be involved directly in the research activities as assistants at different levels. The expected research outcomes from this project will also enhance the current curricula related to machine learning, Internet of things, and wireless communications.The main research objective of this project is to understand the sensing and communication challenges to achieving cooperative perception among autonomous vehicles, and to use the insights thus gained to guide the design of suitable data exchange format, data fusion algorithms, and efficient millimeter wave vehicular communications. Results from this project will include a machine learning based cooperative perception framework, which will shed light on effectively combining feature maps, derived from machine learning models on autonomous vehicles, in a distributed manner. The resulted feature map compression and feature map selection approaches will significantly reduce the amount of data exchanged among vehicles, enabling agile and precise cooperative perception on connected and autonomous vehicles. The proposed scalable feature map transmission mechanism jointly considers the application requirements, link and physical layer characteristics of millimeter wave links, enabling sensor data sharing on a massive scale among autonomous vehicles. The implemented system and evaluation platform will serve as a convincing proof-of-concept for the proposed solution, thus opening the door to widespread adoption of cooperative perception applications via millimeter wave communications in future vehicle networks. The collected dataset from this project will be made publicly available, serving as a catalyst for enabling innovative research on cooperative object detection, vehicular edge computing, and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从机器学习的角度来看,通过了解自动驾驶汽车之间交换数据的内容和方式,可以实现自动驾驶汽车的精确协同感知,从而使大量传感器信息能够在车辆之间共享。这一进步对于延长自动驾驶汽车的视线和视野非常有用,否则会受到盲点和闭塞的困扰。自动驾驶汽车的扩展视野在有遮挡的情况下是有益的,无法完全感知环境。这种态势感知的增加促进了窄范围内的安全驾驶,并提高了大范围内的交通流量效率。拟议中的研究工作不仅会改变人们对自动驾驶汽车感知系统的看法,还可能为设计以前无法想象的新系统提供机会。这个项目提供了广泛的研究活动,从数据收集,算法设计,系统开发和实地评估,这将吸引不同背景和目标的学生。本科生和研究生将作为不同层次的助理直接参与研究活动。该项目的预期研究成果也将增强当前与机器学习、物联网和无线通信相关的课程。该项目的主要研究目标是了解实现自动驾驶车辆之间协同感知的传感和通信挑战,并利用由此获得的见解指导设计合适的数据交换格式、数据融合算法和高效的毫米波车辆通信。该项目的成果将包括一个基于机器学习的合作感知框架,该框架将阐明如何以分布式方式有效地结合自动驾驶汽车上的机器学习模型生成的特征图。由此产生的特征图压缩和特征图选择方法将大大减少车辆之间交换的数据量,从而实现对联网和自动驾驶车辆的敏捷和精确的协同感知。所提出的可扩展特征图传输机制综合考虑了毫米波链路的应用需求、链路和物理层特性,实现了自动驾驶汽车间传感器数据的大规模共享。实施的系统和评估平台将作为拟议解决方案的令人信服的概念验证,从而为通过毫米波通信在未来车辆网络中广泛采用协作感知应用打开大门。从该项目收集的数据集将公开提供,作为实现协作目标检测、车辆边缘计算和机器学习方面的创新研究的催化剂。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Vehicle Platooning with Joint Network-Traffic Approach
- DOI:10.1109/globecom46510.2021.9685116
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Chinmay Mahabal;Hua Fang;Honggang Wang;Qing Yang
- 通讯作者:Chinmay Mahabal;Hua Fang;Honggang Wang;Qing Yang
CoConv: Learning Dynamic Cooperative Convolution for Image Recognition
- DOI:10.1109/icme51207.2021.9428105
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Kien X. Nguyen;Tiffany Ryu;Jocelyn Zhang;Xu Ma;Qing Yang;Song Fu;P. Palacharla;N. Wang;Xi Wang
- 通讯作者:Kien X. Nguyen;Tiffany Ryu;Jocelyn Zhang;Xu Ma;Qing Yang;Song Fu;P. Palacharla;N. Wang;Xi Wang
Vehicular Edge Computing for Multi-Vehicle Perception
用于多车辆感知的车辆边缘计算
- DOI:10.1109/metrocad51599.2021.00011
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tang, Sihai;Gu, Zhaochen;Fu, Song;Yang, Qing
- 通讯作者:Yang, Qing
VECFrame: A Vehicular Edge Computing Framework for Connected Autonomous Vehicles
VECFrame:用于联网自动驾驶车辆的车辆边缘计算框架
- DOI:10.1109/edge53862.2021.00019
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tang, Sihai;Chen, Bruce;Iwen, Harold;Hirsch, Jason;Fu, Song;Yang, Qing;Palacharla, Paparao;Wang, Nannan;Wang, Xi;Shi, Weisong
- 通讯作者:Shi, Weisong
Spatial Pyramid Attention for Deep Convolutional Neural Networks
深度卷积神经网络的空间金字塔注意力
- DOI:10.1109/tmm.2021.3068576
- 发表时间:2021
- 期刊:
- 影响因子:7.3
- 作者:Ma, Xu;Guo, Jingda;Sansom, Andrew;Mcguire, Mara;Kalaani, Andrew;Chen, Qi;Tang, Sihai;Yang, Qing;Fu, Song
- 通讯作者:Fu, Song
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Fu其他文献
Statistical survey of electrostatic electron cyclotron harmonic waves based on long-term THEMIS FFF wave data
基于长期THEMIS FFF波数据的静电电子回旋谐波统计调查
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ni Binbin;Gu Xudong;Song Fu;Zheng Xiang - 通讯作者:
Zheng Xiang
Fuzzy pushdown termination games
模糊下推终止博弈
- DOI:
10.1109/tfuzz.2018.2869127 - 发表时间:
2018 - 期刊:
- 影响因子:11.9
- 作者:
Pan Haiyu;Song Fu;Cao Yongzhi;Qian Junyan - 通讯作者:
Qian Junyan
On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm
2014年9月12日地磁暴期间辐射带电子丢失的损失机制
- DOI:
10.26464/epp2020060 - 发表时间:
2020-11 - 期刊:
- 影响因子:2.9
- 作者:
Xin Ma;Zheng Xiang;BinBin Ni;Song Fu;Xing Cao;Man Hua;DeYu Guo;YingJie Guo;XuDong Gu;ZeYuan Liu;Qi Zhu - 通讯作者:
Qi Zhu
Magnetic properties evolution with grain boundary phase transformation and their growth in Nd-Fe-Cu-Ga-B sintered magnet during post-sinter annealing process
Nd-Fe-Cu-Ga-B 烧结磁体在烧结后退火过程中磁性能随晶界相变的演变及其生长
- DOI:
10.1016/j.intermet.2021.107303 - 发表时间:
2021-10 - 期刊:
- 影响因子:4.4
- 作者:
Song Fu;Xiaolian Liu;Jiaying Jin;Zhiheng Zhang;Yongsheng Liu;Mi Yan - 通讯作者:
Mi Yan
Flow separation control in a conical diffuser with a Karman-vortex generator
带卡门涡流发生器的锥形扩散器中的流动分离控制
- DOI:
10.1016/j.ast.2020.106076 - 发表时间:
2020-07 - 期刊:
- 影响因子:5.6
- 作者:
Jinwen Yang;Yufei Zhang;Haixin Chen;Song Fu - 通讯作者:
Song Fu
Song Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Fu', 18)}}的其他基金
IUCRC Phase I University of North Texas: Center for Electric, Connected and Autonomous Technologies for Mobility (eCAT)
IUCRC 第一阶段北德克萨斯大学:电动、互联和自主移动技术中心 (eCAT)
- 批准号:
2231519 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant
IUCRC Planning Grant University of North Texas: Center for Electric, Connected and Autonomous Technologies for Mobility (eCAT)
IUCRC 规划拨款北德克萨斯大学:电动、互联和自主移动技术中心 (eCAT)
- 批准号:
2113805 - 财政年份:2021
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
CyberTraining: Implementation: Small: Collaborative and Integrated Training on Connected and Autonomous Vehicles Cyber Infrastructure
网络培训:实施:小型:联网和自动驾驶车辆网络基础设施的协作和综合培训
- 批准号:
2017564 - 财政年份:2020
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
REU Site: Vehicular Edge Computing and Security: Research Experience for Undergraduates
REU 网站:车辆边缘计算和安全:本科生的研究经验
- 批准号:
1852134 - 财政年份:2019
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Wizard: Exploiting Disk Performance Signatures for Cost-Effective Management of Large-Scale Storage Systems
CSR:中:协作研究:向导:利用磁盘性能签名实现大规模存储系统的经济高效管理
- 批准号:
1563750 - 财政年份:2016
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
CSR:Small:Failure-Aware Monitoring and Management of Online Availability and Performance for Dependable Computing Clusters
CSR:小:可靠计算集群的在线可用性和性能的故障感知监控和管理
- 批准号:
0915396 - 财政年份:2009
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
- 批准号:
2311950 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317826 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别:
Continuing Grant