Collaborative Research: Three-Dimensional Stability of Kinetic Flux Rope Structures in a Collisionless Magnetized Plasma

合作研究:无碰撞磁化等离子体中动能通量绳结构的三维稳定性

基本信息

  • 批准号:
    2010393
  • 负责人:
  • 金额:
    $ 14.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project will theoretically and computationally study formation of self-organized structures in a plasma. Most observable matter in the universe is in the form of a plasma, consisting of electrically charged particles with electrons freed from atoms. In a plasma, the electrons and the charged atoms (the ions) move quasi-randomly, but their spatial distribution and movement can produce electric and magnetic fields leading to formation of plasma structures with sizes much larger than atomic sizes but much smaller than the volume of the whole plasma. Such small structures can fundamentally change the properties of plasmas. However, whether and how such structures can form is still poorly understood and will be pursued within this project. Results from this research will increase our understandings of properties of space, astrophysical, and laboratory plasmas, with societally important applications for space weather prediction and future fusion energy devices. This collaborative project will support a PhD student at University of Alaska Fairbanks, as well as a PhD student at University of New Hampshire. The students will receive training in both theory and numerical simulations.High temperature plasmas can be considered collisionless, with particle distributions in a collisionless plasma often deviating from a Maxwellian. While the forms of such non-Maxwellian distributions are important, it is also important to explore how small-scale kinetic structures can exist in such plasmas, with the Bernstein-Greene-Kruskal (BGK) modes in 1D being one example. This project will perform numerical simulations using the state-of-the-art Particle-In-Cell (PIC) code "PSC" to study the stability of analytic multi-dimensional solutions of localized kinetic structures in the form of magnetic flux ropes satisfying the Vlasov-Poisson-Ampère system of equations. Possible formation mechanisms for the generation of stable two-dimensional or three-dimensional localized kinetic structures will also be studied numerically. The main goal of this research is to characterize quantitatively the conditions under which kinetic structures can be stable. This project is expected to produce new understanding of small-scale kinetic physics in collisionless magnetized plasmas. New insights obtained through this project will have impact on fundamental plasma theory, as well as affect frontier problems in laboratory, space and astrophysical plasmas. For example, it can have significant implication for understanding the process of magnetic reconnection, where recent large-scale kinetic simulations have discovered the generation of small kinetic scale flux ropes during magnetic reconnection. Small-scale kinetic structures have also been observed by the Magnetospheric Multiscale (MMS) mission, which has the main objective of studying magnetic reconnection in space. Moreover, this project can impact other fields in science since the Vlasov equation is widely applied in many different physical systems. This project is jointly funded by the Division of Physics and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画将从理论与计算上研究电浆中自组织结构的形成。 宇宙中大多数可观测到的物质都是等离子体的形式,由带电粒子和从原子中释放出来的电子组成。在等离子体中,电子和带电原子(离子)准随机地移动,但是它们的空间分布和移动可以产生电场和磁场,导致形成尺寸比原子尺寸大得多但比整个等离子体的体积小得多的等离子体结构。 这种小结构可以从根本上改变等离子体的性质。然而,人们对这种结构是否能够形成以及如何形成仍然知之甚少,将在本项目中探讨。 这项研究的结果将增加我们对空间,天体物理和实验室等离子体特性的理解,并在空间天气预测和未来聚变能源设备方面具有重要的社会应用。这个合作项目将支持阿拉斯加大学费尔班克斯的一名博士生,以及新罕布什尔州大学的一名博士生。 学生将接受理论和数值模拟方面的培训。高温等离子体可以被认为是无碰撞的,无碰撞等离子体中的粒子分布通常偏离麦克斯韦分布。 虽然这种非麦克斯韦分布的形式很重要,但探索小尺度动力学结构如何存在于这样的等离子体中也很重要,一维的伯恩斯坦-格林-克鲁斯卡尔(BGK)模式就是一个例子。 该项目将使用最先进的粒子单元(PIC)代码“PSC”进行数值模拟,以研究满足Vlasov-Poisson-Ampère方程组的磁通绳形式的局部动力学结构的多维解析解的稳定性。 可能的形成机制的稳定的二维或三维局部动力学结构的产生也将进行数值研究。本研究的主要目标是定量表征动力学结构稳定的条件。预计该项目将对无碰撞磁化等离子体中的小尺度动力学物理产生新的理解。通过该项目获得的新见解将对基础等离子体理论产生影响,并影响实验室,空间和天体物理等离子体的前沿问题。 例如,它可能对理解磁重联过程具有重要意义,最近的大规模动力学模拟发现了磁重联过程中小动力学尺度通量绳的产生。磁层多尺度(MMS)使命也观测到了小尺度动力学结构,其主要目标是研究空间磁重联。 此外,这个项目可以影响其他科学领域,因为弗拉索夫方程广泛应用于许多不同的物理系统。 该项目由物理部和激励竞争性研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Germaschewski其他文献

Kai Germaschewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Germaschewski', 18)}}的其他基金

SHINE: Instabilities Driven by Anisotropic Ion and Electron Beams in the Solar Wind: Analytical Theory, Numerical Simulations, and In-Situ Observations
SHINE:太阳风中各向异性离子和电子束驱动的不稳定性:分析理论、数值模拟和现场观测
  • 批准号:
    1460190
  • 财政年份:
    2015
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Continuing Grant
CAREER: Studies of 3D Dynamics in the Global Magnetosphere Using High-performance Heterogeneous Computing Architectures
职业:使用高性能异构计算架构研究全球磁层中的 3D 动力学
  • 批准号:
    1056898
  • 财政年份:
    2011
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
Acquisition of a Cell BE based Cluster for Development and Deployment of Advanced Computational Methods
获取基于 Cell BE 的集群,用于开发和部署高级计算方法
  • 批准号:
    0855145
  • 财政年份:
    2009
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IHBEM: Three-way coupling of water, behavior, and disease in the dynamics of mosquito-borne disease systems
合作研究:IHBEM:蚊媒疾病系统动力学中水、行为和疾病的三向耦合
  • 批准号:
    2327816
  • 财政年份:
    2023
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: Three-way coupling of water, behavior, and disease in the dynamics of mosquito-borne disease systems
合作研究:IHBEM:蚊媒疾病系统动力学中水、行为和疾病的三向耦合
  • 批准号:
    2327814
  • 财政年份:
    2023
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: IHBEM: Three-way coupling of water, behavior, and disease in the dynamics of mosquito-borne disease systems
合作研究:IHBEM:蚊媒疾病系统动力学中水、行为和疾病的三向耦合
  • 批准号:
    2327815
  • 财政年份:
    2023
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: Three-way coupling of water, behavior, and disease in the dynamics of mosquito-borne disease systems
合作研究:IHBEM:蚊媒疾病系统动力学中水、行为和疾病的三向耦合
  • 批准号:
    2327817
  • 财政年份:
    2023
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Active and Passive Seismic Imaging of the Three-Dimensional Structure and Magma System beneath the Summit of Kilauea Volcano
合作研究:基拉韦厄火山顶下三维结构和岩浆系统的主动和被动地震成像
  • 批准号:
    2218645
  • 财政年份:
    2023
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Design, Characterization, and Modeling of Metal Nanocluster Electrocatalysts Linked to Three-Dimensional Graphene
CAS:合作研究:与三维石墨烯相关的金属纳米团簇电催化剂的设计、表征和建模
  • 批准号:
    2247574
  • 财政年份:
    2023
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Design, Characterization, and Modeling of Metal Nanocluster Electrocatalysts Linked to Three-Dimensional Graphene
CAS:合作研究:与三维石墨烯相关的金属纳米团簇电催化剂的设计、表征和建模
  • 批准号:
    2247575
  • 财政年份:
    2023
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Active and Passive Seismic Imaging of the Three-Dimensional Structure and Magma System beneath the Summit of Kilauea Volcano
合作研究:基拉韦厄火山顶下三维结构和岩浆系统的主动和被动地震成像
  • 批准号:
    2218646
  • 财政年份:
    2023
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Interfacing Students at Three Universities to Elucidate Enzymatic Transformations of Guanide Compounds that Impact Health and the Environment
合作研究:与三所大学的学生合作,阐明影响健康和环境的胍化合物的酶促转化
  • 批准号:
    2203751
  • 财政年份:
    2022
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: Integrated Moment-Based Descriptors and Deep Neural Network for Screening Three-Dimensional Biological Data
合作研究:集成基于矩的描述符和深度神经网络用于筛选三维生物数据
  • 批准号:
    2151678
  • 财政年份:
    2022
  • 资助金额:
    $ 14.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了