Entropy of nonautonomous dynamical systems

非自主动力系统的熵

基本信息

项目摘要

The aim of this research project is the advancement of the entropy theory of nonautonomous deterministic dynamical systems. In the 1990s, the notion of topological entropy for nonautonomous systems has been introduced by S.Kolyada and L. Snoha, and in the subsequent years it has been investigated by several authors. This notion generalizes the classical notion of topological entropy in the theory of autonomous dynamical systems, which, as arguably the most important invariant of such systems, has been investigated thoroughly since the 1960s and nowadays is considered as well-understood. The topological entropy of a system is a real number which can be regarded as a measure for the global exponential complexity of the orbit structure. The more complicated or chaotic the trajectories depend on their initial values, the higher is the value of the entropy. The quantity introduced by Kolyada and Snoha is a similar measure for systems with time-dependent dynamics, which, for example, are generated by differential equations with explicitly time-dependent right-hand sides. Beyond that, it generalizes several other concepts of entropy, in particular topological sequence entropy, topological entropy of systems with non-compact state space and topological entropy of random dynamical systems. Finally, there is also a relation to control-theoretic notions of entropy which are measures for minimal bit rates necessary to accomplish control tasks. The first objective of the research project is to establish the measure-theoretic counterpart of topological entropy for nonautonomous systems, the metric entropy, and to relate it to the topological entropy as this is accomplished for the corresponding notions in the autonomous theory via the variational principle. This principle, which asserts that the topological entropy is equal to the supremum of the metric entropies with respect to all invariant measures of the system, is the basis for most nontrivial results about topological entropy. Further topics to be treated are: The characterization of systems with vanishing entropy via their nonwandering sets, the entropy of hyperbolic systems, and relations between escape rates and entropy. All of these topics are also related to control-theoretic problems.
这个研究项目的目的是推进非自治确定性动力系统的熵理论。20世纪90年代,S.Kolyada和L. Snoha,并在随后的几年里,它已被调查的几个作者。这个概念概括了自治动力系统理论中的拓扑熵的经典概念,可以说是此类系统中最重要的不变量,自20世纪60年代以来已经被彻底研究,现在被认为是很好理解的。系统的拓扑熵是一个真实的数,它可以被看作是轨道结构的全局指数复杂性的度量。轨迹对初始值的依赖越复杂或越混乱,熵值就越高。Kolyada和Snoha引入的量是具有时间依赖动态的系统的类似度量,例如,由具有显式时间依赖右侧的微分方程产生。除此之外,还推广了熵的其它几个概念,特别是拓扑序列熵、非紧状态空间系统的拓扑熵和随机动力系统的拓扑熵。最后,也有一个关系到控制理论的熵概念,这是必要的最小比特率来完成控制任务的措施。该研究项目的第一个目标是建立非自治系统拓扑熵的测度论对应物,度量熵,并将其与拓扑熵联系起来,因为这是通过变分原理在自治理论中实现的相应概念。这个原则,它断言拓扑熵等于度量熵的上确界关于所有不变的措施的系统,是大多数非平凡的结果拓扑熵的基础。进一步的主题是:系统的特点消失熵通过其非游荡集,熵的双曲系统,以及逃逸率和熵之间的关系。所有这些主题也都与控制理论问题有关。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expanding and expansive time-dependent dynamics
  • DOI:
    10.1088/0951-7715/28/3/669
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    C. Kawan
  • 通讯作者:
    C. Kawan
Invariance Entropy of Hyperbolic Control Sets
  • DOI:
    10.3934/dcds.2016.36.97
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Silva;C. Kawan
  • 通讯作者:
    A. Silva;C. Kawan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Christoph Kawan其他文献

Privatdozent Dr. Christoph Kawan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rate-Induced Tipping In NonAutonomous Systems
非自治系统中由速率引起的倾翻
  • 批准号:
    EP/X027651/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Applied Nonautonomous Dynamical Systems: Theory, Methods and Examples
应用非自主动力系统:理论、方法和实例
  • 批准号:
    EP/T018178/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Dynamics of Nonlinear Nonautonomous Systems with Delays and Applications
具有时滞的非线性非自治系统动力学及其应用
  • 批准号:
    DDG-2015-00046
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Development Grant
Dynamics of Nonlinear Nonautonomous Systems with Delays and Applications
具有时滞的非线性非自治系统动力学及其应用
  • 批准号:
    DDG-2015-00046
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Development Grant
Nonautonomous Structured Population Models with Application to Amphibians and Associated Diseases
非自主结构化群体模型在两栖动物和相关疾病中的应用
  • 批准号:
    1312963
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Construction of the instability theory of two-dimensional nonautonomous systems and its application
二维非自治系统不稳定性理论的构建及其应用
  • 批准号:
    23740115
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
New Challenges in Nonautonomous Bifurcation Theory
非自治分岔理论的新挑战
  • 批准号:
    EP/I004165/1
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Dynamical aspects in nonautonomous and random differential equations and applications
非自治和随机微分方程的动力学方面及其应用
  • 批准号:
    0907752
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamical aspects in nonautonomous and random differential equations and applications
非自治和随机微分方程的动力学方面及其应用
  • 批准号:
    0504166
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.-Polish Cooperative Research: Lyapunov Exponents and Spectrum for Random and Nonautonomous Parabolic Equations
美波合作研究:随机和非自治抛物型方程的李亚普诺夫指数和谱
  • 批准号:
    0341754
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了