Bound State Theory in QED and QCD: Muonium and Pentaquarks

QED 和 QCD 中的束缚态理论:锷和五夸克

基本信息

  • 批准号:
    2011161
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Bound states of fundamental particles are ubiquitous in nature and are one of the most interesting and challenging objects of research in physics. Theoretical research on the properties of bound states in quantum electrodynamics and in quantum chromodynamics is the main goal of this project. Research on the properties of muonium, a loosely bound state of electron and positive muon, will reduce the theoretical uncertainty for the hyperfine splitting in muonium. Together with the results of the ongoing MuSEUM experiment in Japan, this will lead to a more precise value of the electron-muon mass ratio, will allow for the first time a detection of the weak interaction contribution to the energy shift of atomic energy levels, and will be used in the future CODATA adjustment of the fundamental physical constants. The goal of research on the hidden charm pentaquarks, a new class of strongly interacting particles recently discovered at CERN, is to explore their internal structure. The hadrocharmonium and molecular scenarios for pentaquarks will be developed further, and predictions that differentiate these models (quantum numbers and masses) will be obtained and compared with the experimental data. This will lead to progress in understanding of the strong interaction dynamics. The results of the research on pentaquarks will be cross-disciplinary and will contribute to the field of particle physics.High precision quantum electrodynamics of hydrogenlike bound states is an active field of theoretical research motivated both by the spectacular experimental progress and the intellectual challenge. Many theoretical problems in the theory of electromagnetically bound two-particle states, in particular of muonium, require further research. The objective of this research is to reduce the theoretical error (due to the yet uncalculated contributions) of the hyperfine splitting in muonium below 10 Hz. To achieve this goal, numerous recoil corrections of the seventh order in the fine structure constant and nonrecoil corrections of the eighth order in the fine structure constant will be calculated. In work on the theory of pentaquarks, partial decay widths of the hadrocharmonium and molecular Pc(4312) will be calculated, interpretation of the wide Pc(4380) resonance in both scenarios will be explored, as well as a natural interpretation of the LHCb Pc(4440) and Pc(4457) pentaquarks in the molecular picture. In connection with the molecular Pc(4312) pentaquark, the group will look for a natural qualitative and quantitative explanation of how exchanges by mesons heavier than the pion can generate a loosely bound resonance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基本粒子的束缚态在自然界中普遍存在,是物理学中最有趣和最具挑战性的研究对象之一。本计画的主要目标为量子电动力学与量子色动力学中束缚态性质的理论研究。μ素是一种电子与正μ子的松散束缚态,对其性质的研究将减少μ素超精细分裂理论的不确定性。与日本正在进行的MuSEUM实验的结果一起,这将导致电子-μ子质量比的更精确值,将首次允许检测弱相互作用对原子能级能量移动的贡献,并将用于未来CODATA调整基本物理常数。隐魅五夸克是欧洲核子研究中心最近发现的一类新的强相互作用粒子,其研究目标是探索它们的内部结构。将进一步发展五夸克的强子粲偶素和分子方案,并将获得区分这些模型(量子数和质量)的预测,并与实验数据进行比较。这将导致在理解强相互作用动力学方面取得进展。对五夸克态的研究将是一个跨学科的研究,并将对粒子物理学领域做出贡献。类氢束缚态的高精度量子电动力学是一个活跃的理论研究领域,其动力来自于引人注目的实验进展和智力挑战。电磁束缚二粒子态理论中的许多理论问题,特别是μ素的理论问题,还需要进一步的研究。本研究的目的是减少理论误差(由于尚未计算的贡献)的超精细分裂的μ素低于10赫兹。为了实现这一目标,许多反冲修正的精细结构常数的第七阶和非反冲修正的精细结构常数的第八阶将被计算。在五夸克理论的工作中,将计算强子粲偶素和分子Pc(4312)的部分衰变宽度,将探索在这两种情况下对宽Pc(4380)共振的解释,以及在分子图像中对LHCb Pc(4440)和Pc(4457)五夸克的自然解释。在分子Pc(4312)五夸克态方面,该研究小组将寻找比π介子重的介子交换如何产生松散束缚共振的自然定性和定量解释。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One-loop electron mass and QED trace anomaly
单环电子质量和 QED 痕量异常
  • DOI:
    10.1140/epjc/s10052-023-11535-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eides, Michael I.
  • 通讯作者:
    Eides, Michael I.
Three-loop corrections to lamb shift in positronium: Electron factor and polarization
正电子素中羔羊位移的三环校正:电子因子和极化
  • DOI:
    10.1016/j.physletb.2022.137247
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Eides, Michael I.;Shelyuto, Valery A.
  • 通讯作者:
    Shelyuto, Valery A.
Three-loop corrections to the Lamb shift in muonium and positronium
  • DOI:
    10.1103/physreva.105.012803
  • 发表时间:
    2022-01-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Eides, Michael, I;Shelyuto, Valery A.
  • 通讯作者:
    Shelyuto, Valery A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Eides其他文献

Michael Eides的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Eides', 18)}}的其他基金

Bound State Theory and High Precision QED: Muonium, Positronium, Hydrogen, and Pentaquarks
束缚态理论和高精度 QED:锷、正电子、氢和五夸克
  • 批准号:
    1724638
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory of Light Hydrogenlike Bound States: Multiloop Corrections in Muonic and Electronic Atoms and Ions
轻类氢束缚态理论:μ子和电子原子和离子的多环修正
  • 批准号:
    1402593
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory of Light Hydrogenlike Bound States: High Order Corrections in Muonic and Electronic Atoms and Ions
轻类氢束缚态理论:μ子和电子原子和离子的高阶修正
  • 批准号:
    1066054
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory of Light Hydrogenlike Bound States: High Order Corrections to Lamb Shift, Hyperfine Splitting, and g-Factors
轻类氢束缚态理论:兰姆位移、超精细分裂和 g 因子的高阶修正
  • 批准号:
    0757928
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory of Loosely Bound Composite Systems: Multiloop Corrections to Lamb Shift, Hyperfine Splitting, and g-Factors
松散结合复合系统理论:Lamb 位移、超精细分裂和 g 因子的多环修正
  • 批准号:
    0456462
  • 财政年份:
    2005
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory of Loosely Bound Composite Systems: High Order Corrections to Energy Levels and g-Factors
松散束缚复合系统理论:能级和 g 因子的高阶修正
  • 批准号:
    0138210
  • 财政年份:
    2002
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory of Loosely Bound Composite Systems: High Order Corrections to Lamb Shift and Hyperfine Splitting
松束缚复合系统理论:Lamb 位移和超精细分裂的高阶修正
  • 批准号:
    0049059
  • 财政年份:
    2000
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory of Loosely Bound Composite Systems: High Order Corrections to Lamb Shift and Hyperfine Splitting
松束缚复合系统理论:Lamb 位移和超精细分裂的高阶修正
  • 批准号:
    9900771
  • 财政年份:
    1999
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
  • 批准号:
    2327327
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantification of brain state transition costs based on stochastic control theory and its application to cognitive neuroscience
基于随机控制理论的大脑状态转换成本量化及其在认知神经科学中的应用
  • 批准号:
    22KJ1172
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Constructing a New Theory of the State through Feminist Theory: From the Concept of Care and the Resonception of Security
通过女性主义理论构建新的国家理论:从关怀理念与安全感来看
  • 批准号:
    23H03654
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RTG: Topology, Representation Theory, and Mathematical Physics at Louisiana State University
RTG:路易斯安那州立大学拓扑学、表示论和数学物理
  • 批准号:
    2231492
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
  • 批准号:
    RGPIN-2019-06103
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Aiming for Chemical Accuracy in Ground-state Density Functional Theory
追求基态密度泛函理论的化学准确性
  • 批准号:
    2154371
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory and Simulation of Non-adiabatic Excited State Dynamics in Nanoscale systems
纳米级系统非绝热激发态动力学的理论与模拟
  • 批准号:
    2154367
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Excited State Properties of Semiconductions and Insulators from Many Body Perturbation Theory
来自多体摄动理论的半导体和绝缘体的激发态性质
  • 批准号:
    2748355
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Development of wavefunction-based theory for solid-state strong field science
固态强场科学波函数理论的发展
  • 批准号:
    21J11828
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了