RTG: Topology, Representation Theory, and Mathematical Physics at Louisiana State University
RTG:路易斯安那州立大学拓扑学、表示论和数学物理
基本信息
- 批准号:2231492
- 负责人:
- 金额:$ 249.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will support a number of initiatives aimed at making Louisiana State University a premier institution in the south for students and early-career mathematicians seeking to engage in cutting-edge research in the fields of topology, representation theory, and mathematical physics. Activities will be pitched at a range of levels, including high school students, undergraduates, graduate students, and postdoctoral researchers, and includes ongoing events during the academic year as well as during the summer months. Through these efforts, the PIs hope to broaden engagement with research-level mathematics while simultaneously helping build a talented workforce of research mathematicians.In the past twenty years, the Department of Mathematics at Louisiana State University has experienced enormous growth in research productivity, in career prospects for Ph.D. graduates, and in visibility on a national and international scale. The present proposal aims to build on this growth on three fronts: (i) Outreach initiatives aimed at local high schools and at regional undergraduate institutions; (ii) Summer "incubator workshops" aimed at launching new research projects and collaborations; and (iii) Enhancing existing infrastructure through graduate traineeships, postdoctoral positions, and seminar support. Specific research projects will draw on the expertise of the team of twelve senior personnel on topics such as contact and symplectic topology, geometric group theory, harmonic analysis, modular representation theory, and the geometric Langlands program.This project is jointly funded by the Topology & Geometric Analysis Program (TGA), The Algebra & Number Theory Program (ANT), the Established Program to Stimulate Competitive Research (EPSCoR), and Research Training Groups in the Mathematical Sciences (RTG).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持一些举措,旨在使路易斯安那州立大学在南部的学生和职业生涯早期的数学家寻求从事拓扑学,表示论和数学物理领域的前沿研究的首要机构。 活动将在一系列层次,包括高中生,本科生,研究生和博士后研究人员,并包括在学年期间以及在夏季正在进行的活动。 通过这些努力,PI希望扩大与研究级数学的接触,同时帮助建立一支有才华的研究数学家队伍。在过去的20年里,路易斯安那州立大学数学系经历了巨大的增长,在研究生产力,在博士的职业前景。毕业生,并在国内和国际范围内的知名度。 目前的建议旨在从三个方面促进这一增长:㈠针对当地高中和区域本科院校的外联举措; ㈡旨在启动新的研究项目和合作的夏季“孵化器讲习班”; ㈢通过研究生实习、博士后职位和研讨会支助加强现有基础设施。 具体的研究项目将利用12名高级人员的专业知识,如接触和辛拓扑,几何群论,调和分析,模块化表示理论和几何朗兰兹计划。该项目由拓扑&几何分析计划(TGA),代数&数论计划(ANT),刺激竞争研究的既定计划(EPSCoR),该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pramod Achar其他文献
Pramod Achar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pramod Achar', 18)}}的其他基金
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 249.61万 - 项目类别:
Standard Grant
Geometric Methods in Modular Representation Theory
模表示论中的几何方法
- 批准号:
1802241 - 财政年份:2018
- 资助金额:
$ 249.61万 - 项目类别:
Continuing Grant
Future Directions in Representation Theory
表示论的未来方向
- 批准号:
1743974 - 财政年份:2017
- 资助金额:
$ 249.61万 - 项目类别:
Standard Grant
Modular Representation Theory and Geometric Langlands Duality
模表示论与几何朗兰兹对偶
- 批准号:
1500890 - 财政年份:2015
- 资助金额:
$ 249.61万 - 项目类别:
Standard Grant
Derived Equivalences and Mixed Categories in Representation Theory
表示论中的派生等价和混合范畴
- 批准号:
1001594 - 财政年份:2010
- 资助金额:
$ 249.61万 - 项目类别:
Standard Grant
Hecke Algebras and Complex Reflection Groups
赫克代数和复反射群
- 批准号:
0500873 - 财政年份:2005
- 资助金额:
$ 249.61万 - 项目类别:
Standard Grant
Representation Theory: Orbit Method and Complex Groups
表示论:轨道法和复群
- 批准号:
0102030 - 财政年份:2001
- 资助金额:
$ 249.61万 - 项目类别:
Fellowship Award
相似海外基金
Conference: Categorical methods in representation theory and quantum topology
会议:表示论和量子拓扑中的分类方法
- 批准号:
2204700 - 财政年份:2022
- 资助金额:
$ 249.61万 - 项目类别:
Standard Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
$ 249.61万 - 项目类别:
Research Grant
Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
- 批准号:
2101844 - 财政年份:2021
- 资助金额:
$ 249.61万 - 项目类别:
Continuing Grant
RTG: Combinatorics, Geometry, Representation Theory, and Topology at University of Oregon
RTG:俄勒冈大学的组合学、几何学、表示论和拓扑学
- 批准号:
2039316 - 财政年份:2021
- 资助金额:
$ 249.61万 - 项目类别:
Continuing Grant
Geometric Representation Theory: Interface of Algebra, Geometry and Topology.
几何表示理论:代数、几何和拓扑的接口。
- 批准号:
2596547 - 财政年份:2021
- 资助金额:
$ 249.61万 - 项目类别:
Studentship
Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology
线性绞丝理论计算量子群表示范畴及其在量子拓扑中的应用
- 批准号:
19K14528 - 财政年份:2019
- 资助金额:
$ 249.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Representation Stability in Topology and Arithmetic Groups
拓扑和算术群中的表示稳定性
- 批准号:
1906123 - 财政年份:2019
- 资助金额:
$ 249.61万 - 项目类别:
Standard Grant
Geometric Representation Theory and Low Dimensional Topology
几何表示理论和低维拓扑
- 批准号:
1856643 - 财政年份:2019
- 资助金额:
$ 249.61万 - 项目类别:
Standard Grant
Representation theoretic methods in geometry and topology
几何和拓扑中的表示理论方法
- 批准号:
RGPIN-2014-04841 - 财政年份:2018
- 资助金额:
$ 249.61万 - 项目类别:
Discovery Grants Program - Individual
Topology, Geometry and Arithmetic of Representation Varieties
表示簇的拓扑、几何和算术
- 批准号:
487339-2016 - 财政年份:2017
- 资助金额:
$ 249.61万 - 项目类别:
Postdoctoral Fellowships