RUI: Using Atomic Physics to Achieve Strong Electron Coupling in Ultracold Plasmas
RUI:利用原子物理实现超冷等离子体中的强电子耦合
基本信息
- 批准号:2011335
- 负责人:
- 金额:$ 19.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
General audience abstract:The plasma state is ubiquitous in the universe - it is estimated that 99% of the atomic matter in the universe is in the plasma state. Ultracold neutral plasmas (UNPs) are plasmas in which the initial electron and ion temperatures are significantly lower than any other known systems yet have densities high enough for their electrostatic interaction energies to be comparable with their kinetic energies (the so-called “strongly coupled” regime). In this regime, states of matter with long range structure, similar to crystallization, may occur. UNPs also have many similarities with plasmas formed when intense lasers are focused into solids, for instance in laser-induced fusion. The PI will carry out experiments on UNPs in his lab at Colby College with the assistance of undergraduate students, and simultaneously pursue numerical simulations. In the experiments, laser-cooled rubidium atoms in a magneto-optical trap (MOT) will be photoionized using pulsed lasers, and the plasma evolution will be observed by detecting the electrons and ions using time-of-flight techniques. In addition to new knowledge gained from the experiments, there is a significant undergraduate research training component to this project. Furthermore, the PI has a strong record of incorporating instrumentation from his research program in the physics teaching curriculum. This project is jointly funded by the Atomic, Molecular, and Optical Experimental Physics program, the Established Program to Stimulate Competitive Research (EPSCoR), and the Plasma Physics program.Technical audience abstract:There has been significant recent success in experiments that have revealed the evolution of ion temperature and coupling strength using optical probes in ultracold neutral plasmas (UNPs) made using cold alkaline earth atoms. Additionally, lasers have been used to cool the ions in such plasmas, dramatically increasing the ionic coupling parameter. In contrast, electrons have several additional heating mechanisms to ions, primarily due to heating when electrons recombine with ions, that limit the minimum temperature (and maximum coupling strength) that can be achieved. The PI and his undergraduate students will use embedded Rydberg atoms to see if cooling mechanisms already identified in his lab can be tailored to overcome these heating mechanisms, and push the electron coupling parameter as high as 0.5. A second goal of the research will be to explore robust methods for measuring electron temperatures in UNPs. Specifically, spatial and temporal mapping of plasma electric fields will be carried out using mm-wave spectroscopy of embedded Rydberg atom sensors, and this method will be compared with direct spatial measurements of the plasma expansion by quenching the UNP with a fast electric field pulse and observing the resulting ion time-of-flight spectra.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通观众摘要:等离子态在宇宙中无处不在——据估计,宇宙中99%的原子物质都处于等离子态。超冷中性等离子体(UNP)是一种等离子体,其中初始电子和离子温度明显低于任何其他已知系统,但密度足够高,使其静电相互作用能与其动能相当(所谓的“强耦合”状态)。 在这种状态下,可能会出现具有长程结构的物质状态,类似于结晶。 UNP 与强激光聚焦到固体时形成的等离子体也有许多相似之处,例如在激光诱导聚变中。 PI 将在本科生的协助下,在科尔比学院的实验室中对 UNP 进行实验,同时进行数值模拟。在实验中,磁光陷阱(MOT)中的激光冷却铷原子将使用脉冲激光进行光电离,并通过使用飞行时间技术检测电子和离子来观察等离子体的演化。除了从实验中获得的新知识之外,该项目还有重要的本科生研究培训部分。此外,PI 在将其研究项目中的仪器纳入物理教学课程方面有着良好的记录。 该项目由原子、分子和光学实验物理项目、刺激竞争研究既定项目 (EPSCoR) 和等离子体物理项目共同资助。技术受众摘要:最近在实验中取得了重大成功,这些实验揭示了使用光学探针在使用冷碱土原子制造的超冷中性等离子体 (UNP) 中离子温度和耦合强度的演变。 此外,激光已被用来冷却此类等离子体中的离子,从而显着增加离子耦合参数。相比之下,电子对离子有几种额外的加热机制,主要是由于电子与离子复合时的加热,这限制了可以达到的最低温度(和最大耦合强度)。 PI 和他的本科生将使用嵌入的里德伯原子来看看是否可以定制他实验室中已经确定的冷却机制来克服这些加热机制,并将电子耦合参数推高至 0.5。该研究的第二个目标是探索测量 UNP 中电子温度的可靠方法。具体来说,等离子体电场的空间和时间映射将使用嵌入式里德堡原子传感器的毫米波光谱进行,并且该方法将与通过用快速电场脉冲猝灭 UNP 并观察所得离子飞行时间光谱来对等离子体膨胀进行直接空间测量进行比较。该奖项反映了 NSF 的法定使命,并被认为是值得的 通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duncan Tate其他文献
Duncan Tate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duncan Tate', 18)}}的其他基金
RUI: Rydberg Atoms and their Effect on Ultra-Cold Plasma Dynamics
RUI:里德伯原子及其对超冷等离子体动力学的影响
- 批准号:
1068191 - 财政年份:2011
- 资助金额:
$ 19.74万 - 项目类别:
Standard Grant
RUI: Structure and dynamics of cold Rydberg gases and cold plasmas
RUI:冷里德伯气体和冷等离子体的结构和动力学
- 批准号:
0652842 - 财政年份:2007
- 资助金额:
$ 19.74万 - 项目类别:
Standard Grant
RUI: Many-Body Effects in a Frozen Rydberg Gas
RUI:冷冻里德堡气体中的多体效应
- 批准号:
0140430 - 财政年份:2002
- 资助金额:
$ 19.74万 - 项目类别:
Continuing Grant
Conventional and Laser Spectroscopy of Atoms and Molecules
原子和分子的常规光谱和激光光谱
- 批准号:
9601638 - 财政年份:1996
- 资助金额:
$ 19.74万 - 项目类别:
Standard Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 19.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 19.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Telecommunication band atomic frequency comb quantum memory using stimulated Raman adiabatic passage
使用受激拉曼绝热通道的电信频带原子频率梳量子存储器
- 批准号:
23KJ0051 - 财政年份:2023
- 资助金额:
$ 19.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
- 批准号:
23K04579 - 财政年份:2023
- 资助金额:
$ 19.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of highly efficient near-infrared laser sustained plasma using atomic line absorption
利用原子线吸收产生高效近红外激光持续等离子体
- 批准号:
23H01602 - 财政年份:2023
- 资助金额:
$ 19.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Atomic resolution imaging using quantum sensors enabled by smart adaptive control
使用智能自适应控制启用的量子传感器进行原子分辨率成像
- 批准号:
2890685 - 财政年份:2023
- 资助金额:
$ 19.74万 - 项目类别:
Studentship
Construction of a cloud service for peace education using photographs before and after the atomic bombing and aerial photographs taken by the U.S. military
利用美军拍摄的原子弹爆炸前后照片和航拍照片构建和平教育云服务
- 批准号:
23K02791 - 财政年份:2023
- 资助金额:
$ 19.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Atomic-scale control of interfaces between different materials using mechanical interaction of high-frequency currents
利用高频电流的机械相互作用对不同材料之间的界面进行原子尺度控制
- 批准号:
23H01301 - 财政年份:2023
- 资助金额:
$ 19.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
- 批准号:
22KJ1464 - 财政年份:2023
- 资助金额:
$ 19.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
- 批准号:
2887441 - 财政年份:2023
- 资助金额:
$ 19.74万 - 项目类别:
Studentship














{{item.name}}会员




