Collaborative Research: Novel Microlocal-Analysis and Domain-Decomposition Based Fast Algorithms for Elastic Wave Modeling and Inversion in Variable Media
合作研究:基于新型微局域分析和域分解的快速算法,用于可变介质中的弹性波建模和反演
基本信息
- 批准号:2011843
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wave propagation is an important phenomenon in many science and engineering disciplines. Computational wave propagation has become a fundamental, vigorously growing technology in diverse disciplines, ranging from radar, sonar, seismic imaging, medical imaging, submarine detection, stealth technology, remote sensing and electronics to microscopy and nanotechnology. These applications are important in particular for the petroleum industry, medical imaging, and material sciences. One of the most challenging problems in computational wave propagation is how to carry out large-scale high frequency wave propagation efficiently and accurately. The investigators in this project will develop novel, fast algorithms for high frequency elastic wave propagation and inversion. In particular, they will focus on techniques including microlocal-analysis and domain-decomposition based fast Huygens sweeping methods and fast multiscale Gaussian beam methods to tackle this long-standing challenge. Graduate students will be involved and receive interdisciplinary training. The project is motivated by science and engineering applications, and it will foster innovations in several theoretical and computational aspects. The goal is to develop efficient and accurate Hadamard-Babich expansion based fast Huygens sweeping methods and multiscale Gaussian wavepacket transform based fast multiscale Gaussian beams for elastic wave propagation in variable media in the high frequency regime and in the presence of caustics. Several avenues of research will be pusrued. First, the proposed new methods will address the challenges in large-scale high-frequency elastic wave modeling and inversion in the presence of caustics. Second, advances will be made in developing novel Hadamard-Babich expansion, domain decomposition, and butterfly-algorithm based fast Huygens sweeping methods for partial differential equation-based Eulerian geometrical optics and computational wave propagation. Both the Hadamard-Babich expansion and domain-decomposition based fast Huygens sweeping method and the fast multiscale Gaussian beam method are capable of producing uniform asymptotic solutions beyond caustics for wave propagation in the high-frequency regime. Third, the new methods will provide efficient tools not used before for many elastic wave-related applications in inhomogeneous media, such as seismic imaging and inversion, and medical imaging and inversion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
波的传播是许多科学和工程学科中的一个重要现象。计算波传播已经成为一项基础的、蓬勃发展的技术,涉及多个学科,从雷达、声纳、地震成像、医学成像、潜艇探测、隐身技术、遥感和电子学到显微镜和纳米技术。这些应用对石油工业、医学成像和材料科学尤其重要。如何高效、准确地进行大规模高频波传播是计算波传播中最具挑战性的问题之一。这个项目的研究人员将开发新的、快速的高频弹性波传播和反演算法。特别是,他们将专注于包括微局部分析和基于快速惠更斯扫描方法和快速多尺度高斯光束方法的区域分解技术,以解决这一长期存在的挑战。研究生将参与并接受跨学科培训。这个项目是由科学和工程应用驱动的,它将在几个理论和计算方面促进创新。目标是开发高效和准确的基于Hadamard-Babich展开的快速惠更斯扫描方法和基于多尺度高斯波包变换的快速多尺度高斯光束,用于在高频区和焦散存在下的可变介质中的弹性波传播。将推进几种研究途径。首先,提出的新方法将解决在焦散存在的情况下大规模高频弹性波建模和反演的挑战。其次,将在基于偏微分方程的欧拉几何光学和计算波传播的新型Hadamard-Babich展开、区域分解和基于蝴蝶算法的快速惠更斯扫描方法方面取得进展。基于Hadamard-Babich展开和区域分解的快速惠更斯扫描方法和快速多尺度高斯波束方法都能够在高频区域产生均匀的超过焦散的渐近解。第三,新方法将为非均匀介质中许多与弹性波相关的应用提供以前没有使用过的有效工具,例如地震成像和反演,以及医学成像和反演。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yassine Boubendir其他文献
Yassine Boubendir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yassine Boubendir', 18)}}的其他基金
Recent Advances in Numerical Wave Propagation
数值波传播的最新进展
- 批准号:
1822316 - 财政年份:2018
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Efficient High Frequency Integral Equations and Iterative Methods
高效的高频积分方程和迭代方法
- 批准号:
1720014 - 财政年份:2017
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Efficient Methods for Electromagnetic and Acoustic Problems
电磁和声学问题的有效方法
- 批准号:
1319720 - 财政年份:2013
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
- 批准号:
2310137 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
- 批准号:
2327797 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant