Efficient High Frequency Integral Equations and Iterative Methods
高效的高频积分方程和迭代方法
基本信息
- 批准号:1720014
- 负责人:
- 金额:$ 24.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is distinguished by its great wealth of potential scientific applications and broad educational activities. Indeed, the numerical algorithms to be developed in the research activities are applicable to realistic configurations in physics, acoustic/electromagnetic, and other disciplines. The major theoretical and computational difficulties in these fields result from the presence of complicating factors such as complex geometries (including aircraft, satellites, radars, antennas, etc.), high-frequency scattering, amongst others. The obtained methods will provide the ability to simulate such systems accurately in order to be applied to the design of engineering vehicles and devices, including military and non-military radar, remote sensing satellites, noise reduction, stealth technology, and many others that will be positively impacted by the results of this proposal. The solvers obtained will be made readily available to industrial scientists, which will contribute to maintaining their competitiveness in particular in the aerospace industry. The educational impact will be significant in several areas. Graduate and undergraduate students will be rigorously trained in both scientific computing and mathematical analysis in order to enable them to face future challenges in science and technology. They will acquire the skills needed in state-of-the-art in applied numerical methods, and this will provide them great opportunities to join high technological industries and contribute in further advancing the U.S technology while having a successful career.The investigator plans to develop efficient and accurate algorithms for acoustic/electromagnetic wave propagation problems in complex structures. The new proposed research activities will have a significant impact in enabling advances in numerical methods and mathematics, and will result in a new family of numerical algorithms with enhanced capabilities over those currently available. The investigator plans to develop a robust non-overlapping domain decomposition method for the Helmholtz equation based on the utilization of optimized transmission conditions on the artificial interfaces and appropriate use of the adaptive radiation condition technique. This also will allow the design of an effective algorithm coupling finite and boundary elements. In the case of the high frequency regime, the investigator proposes to (1) use asymptotic expansions of solutions of the Helmholtz equation, namely the normal derivative of the total field, to rigorously develop a O(1) high frequency integral equations solver, (2) analyze the stability and convergence of the resulting algorithms, and (3) suitably combine high performance computing with the new proposed methods to efficiently tackle real-life problems. Parallel computing and mathematical analysis will be used to help achieve these goals.
该项目的特点是具有巨大的潜在科学应用价值和广泛的教育活动。事实上,在研究活动中开发的数值算法适用于物理、声学/电磁等学科的实际配置。这些领域的主要理论和计算困难源于复杂因素的存在,如复杂的几何结构(包括飞机、卫星、雷达、天线等)、高频散射等。所获得的方法将提供准确模拟此类系统的能力,以便应用于工程车辆和设备的设计,包括军用和非军用雷达、遥感卫星、降噪、隐身技术,以及许多其他将受到该提案结果积极影响的项目。获得的解算器将随时提供给工业科学家,这将有助于保持他们的竞争力,特别是在航空航天行业。这将在几个领域产生重大的教育影响。研究生和本科生将接受严格的科学计算和数学分析方面的培训,以使他们能够面对未来的科学和技术挑战。他们将获得最先进的应用数值方法所需的技能,这将为他们提供进入高科技行业的巨大机会,并在事业成功的同时为进一步推动美国技术的进步做出贡献。研究人员计划开发高效而准确的算法来解决复杂结构中的声波/电磁波传播问题。拟议的新研究活动将对促进数值方法和数学的进步产生重大影响,并将产生一系列新的数值算法,其能力比现有算法更强。研究人员计划开发一种稳健的非重叠区域分解方法,基于在人工界面上使用优化的传输条件并适当使用自适应辐射条件技术来求解Helmholtz方程。这也将允许设计一种有效的算法,将有限元和边界元结合起来。在高频情况下,研究人员建议(1)利用Helmholtz方程解的渐近展开式,即总场的法导数,严格地开发O(1)高频积分方程解的求解器,(2)分析所得算法的稳定性和收敛性,(3)将高性能计算与所提出的新方法适当地结合起来,以有效地解决实际问题。并行计算和数学分析将被用于帮助实现这些目标。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral Galerkin boundary element methods for high-frequency sound-hard scattering problems
- DOI:10.1007/s00211-022-01269-0
- 发表时间:2020-11
- 期刊:
- 影响因子:2.1
- 作者:A. Anand;Y. Boubendir;F. Ecevit;Souaad Lazergui
- 通讯作者:A. Anand;Y. Boubendir;F. Ecevit;Souaad Lazergui
Galerkin Boundary Element Methods for High-Frequency Multiple-Scattering Problems
- DOI:10.1007/s10915-020-01189-x
- 发表时间:2020-03
- 期刊:
- 影响因子:2.5
- 作者:F. Ecevit;A. Anand;Y. Boubendir
- 通讯作者:F. Ecevit;A. Anand;Y. Boubendir
Acceleration of an Iterative Method for the Evaluation of High-Frequency Multiple Scattering Effects
用于评估高频多重散射效应的迭代方法的加速
- DOI:10.1137/16m1080501
- 发表时间:2017
- 期刊:
- 影响因子:3.1
- 作者:Boubendir, Yassine;Ecevit, Fatih;Reitich, Fernando
- 通讯作者:Reitich, Fernando
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yassine Boubendir其他文献
Yassine Boubendir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yassine Boubendir', 18)}}的其他基金
Collaborative Research: Novel Microlocal-Analysis and Domain-Decomposition Based Fast Algorithms for Elastic Wave Modeling and Inversion in Variable Media
合作研究:基于新型微局域分析和域分解的快速算法,用于可变介质中的弹性波建模和反演
- 批准号:
2011843 - 财政年份:2020
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Recent Advances in Numerical Wave Propagation
数值波传播的最新进展
- 批准号:
1822316 - 财政年份:2018
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Efficient Methods for Electromagnetic and Acoustic Problems
电磁和声学问题的有效方法
- 批准号:
1319720 - 财政年份:2013
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Hybrid Algorithms for Wave Propagation
波传播的混合算法
- 批准号:
1016405 - 财政年份:2010
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
相似国自然基金
转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Research Grant
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Fellowship
PopHorn: A deployable folding horn antenna for low frequency space-based applications
PopHorn:适用于低频天基应用的可展开折叠喇叭天线
- 批准号:
ST/Y509942/1 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Research Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
ERI: Biological Effects of Low-Frequency, Low-Intensity Ultrasound on Endothelial Cell and Macrophage Co-Culture
ERI:低频、低强度超声对内皮细胞和巨噬细胞共培养的生物学效应
- 批准号:
2347558 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
- 批准号:
2340268 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
High Frequency Channel for CHAI
CHAI 高频通道
- 批准号:
530175728 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Major Research Instrumentation
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant