CCSS: Learning-Driven Scheduling and Communications in Edge-Assisted Battery-Free Wireless Sensor Networks
CCSS:边缘辅助无电池无线传感器网络中的学习驱动的调度和通信
基本信息
- 批准号:2011845
- 负责人:
- 金额:$ 38.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent significant progresses of information-sensing techniques, wireless communications, and embedded systems have greatly accelerated the generation of sensory data, which provides a nourishing fertile ground for the development of deep learning and machine learning in data-hungry applications. Nevertheless, the inherent limitations of traditional Wireless Sensor Networks (WSNs) including limited lifetime, difficult battery replacement, and centralized network architecture, become an unavoidable obstacle to the wide deployment and adoption of sensory data. Moreover, due to the big volume and high complexity of sensory data, processing sensory data in a centralized manner would increase the consumption of network resources and the risk of privacy leakage. To tackle the aforementioned limitations as well as to satisfy the needs of managing massive sensory data in real applications, developing power-optimized, sustainably-reliable, and efficiently-distributed solutions has become an essential task.This project explores the energy characteristics of battery-free WSNs, capacities of edge-assisted sinks, and advantages of distributed multi-task learning, which will result in the following technical innovations. (1) The seamless integration of battery-free sensors, edge/cloud computing and machine learning can break through technique imprisonments in traditional WSNs, in which new problems are defined and new methodologies are developed. (2) The energy correlation of battery-free sensors in the temporal and spatial domains is exploited to predict sensor’s dynamic sensing ability for scheduling sensing activities, in which the schemes of time-energy-correlated sensing, time-space cooperative data acquisition and energy-accompanied data acquisition will be developed. (3) The interference of battery-free sensors in the temporal, spatial and energy domains is utilized to construct multi-dimensional conflict graphs for interference-free transmission scheduling, in which the algorithms of associating battery-free sensors with edge-assisted sinks and scheduling data collection from sensors to sinks will be designed. (4) The diverse capacities of computation and communication on edge-assisted sinks are employed to schedule learning process so that multiple related tasks can be simultaneously completed in a distributed fashion. (5) The validation is well planned, where an analog simulator and a prototype system will be built to perform the designed simulations and real-data experiments, respectively.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来信息传感技术、无线通信和嵌入式系统的重大进展极大地加速了传感数据的产生,这为深度学习和机器学习在数据饥渴应用中的发展提供了肥沃的土壤。然而,传统的无线传感器网络(WSNs)固有的局限性,包括有限的寿命,电池更换困难,集中式网络架构,成为传感器数据的广泛部署和采用不可避免的障碍。此外,由于感知数据量大且复杂度高,集中处理感知数据会增加网络资源消耗和隐私泄露风险。为了解决上述问题,并满足真实的应用中管理大量传感数据的需求,开发功耗优化、可持续可靠、高效分布式的解决方案已成为一项重要任务。本项目探讨了无电池无线传感器网络的能量特性、边缘辅助接收器的能力以及分布式多任务学习的优势,这将导致以下技术创新。(1)无电池传感器、边缘/云计算和机器学习的无缝集成可以突破传统无线传感器网络中的技术限制,定义新的问题并开发新的方法。(2)利用无电池传感器在时间和空间域的能量相关性来预测传感器的动态感知能力,从而实现时间能量相关感知、时空协同数据采集和能量伴随数据采集等感知活动的调度。(3)利用无电池传感器在时间、空间和能量域上的干扰,构建无干扰传输调度的多维冲突图,设计无电池传感器与边辅助sink的关联算法和从传感器到sink的数据收集调度算法。(4)边缘辅助汇的不同能力的计算和通信调度学习过程,使多个相关的任务可以同时完成,以分布式的方式。(5)该验证计划周密,将建立一个模拟模拟器和一个原型系统,分别执行设计的模拟和真实数据实验。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Neural Network-Based Communication System: Attack and Defense
- DOI:10.1109/tdsc.2022.3203965
- 发表时间:2023-07
- 期刊:
- 影响因子:7.3
- 作者:Zuobin Xiong;Zhipeng Cai;Chun-qiang Hu;Daniel Takabi;Wei Li
- 通讯作者:Zuobin Xiong;Zhipeng Cai;Chun-qiang Hu;Daniel Takabi;Wei Li
Privacy Threat and Defense for Federated Learning With Non-i.i.d. Data in AIoT
- DOI:10.1109/tii.2021.3073925
- 发表时间:2022-02-01
- 期刊:
- 影响因子:12.3
- 作者:Xiong, Zuobin;Cai, Zhipeng;Li, Wei
- 通讯作者:Li, Wei
Privacy-Preserving Mechanisms for Multi-Label Image Recognition
- DOI:10.1145/3491231
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Honghui Xu;Zhipeng Cai;Wei Li
- 通讯作者:Honghui Xu;Zhipeng Cai;Wei Li
Multi-Source Adversarial Sample Attack on Autonomous Vehicles
- DOI:10.1109/tvt.2021.3061065
- 发表时间:2021-03
- 期刊:
- 影响因子:6.8
- 作者:Zuobin Xiong;Honghui Xu;Wei Li;Zhipeng Cai
- 通讯作者:Zuobin Xiong;Honghui Xu;Wei Li;Zhipeng Cai
Federated Generative Model on Multi-Source Heterogeneous Data in IoT
- DOI:10.1609/aaai.v37i9.26252
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Zuobin Xiong;Wei Li;Zhipeng Cai
- 通讯作者:Zuobin Xiong;Wei Li;Zhipeng Cai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Li其他文献
Peak oxygen uptake correlates with disease severity and predicts outcome in adult patients with Ebstein's anomaly of the tricuspid valve.
峰值摄氧量与疾病严重程度相关,并可预测患有埃布斯坦三尖瓣异常的成年患者的预后。
- DOI:
10.1016/j.ijcard.2011.06.047 - 发表时间:
2013 - 期刊:
- 影响因子:3.5
- 作者:
J. Radojevic;R. Inuzuka;R. Alonso;F. Borgia;G. Giannakoulas;M. Prapa;E. Liodakis;Wei Li;L. Swan;G. Diller;K. Dimopoulos;M. Gatzoulis - 通讯作者:
M. Gatzoulis
The histone codes for meiosis
减数分裂的组蛋白密码
- DOI:
10.1530/rep-17-0153 - 发表时间:
2017 - 期刊:
- 影响因子:3.8
- 作者:
Lina Wang;Zhiliang Xu;Muhammad Babar Khawar;Chao Liu;Wei Li - 通讯作者:
Wei Li
The supranutritional selenium status alters blood glucose and pancreatic redox homeostasis via a modulated the selenotranscriptome in chickens (Gallus gallus)
超营养硒状态通过调节鸡的硒转录组改变血糖和胰腺氧化还原稳态
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.9
- 作者:
Li-Run Xiang;Wei Li;Li-Li Wang;Chang-Yu Cao;Nan Li;Xue-Nan Li;Xiu-Qing Jiang;Jin-Long Li - 通讯作者:
Jin-Long Li
Development and Validation of Diagnostic Criteria for Elderly Atopic Dermatitis
老年特应性皮炎诊断标准的制定和验证
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shang‐Shang Wang;Zheng Li;Chaoying Gu;Hui;Yue;X. Yao;Wei Li - 通讯作者:
Wei Li
Characterization of ppd-D1 alleles on the developmental traits and rhythmic expression of photoperiod genes in common wheat
ppd-D1等位基因对普通小麦发育性状和光周期基因节律表达的影响
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.8
- 作者:
Zhao Yongying;Wang Xiang;Wei Li;Yin Jun - 通讯作者:
Yin Jun
Wei Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Li', 18)}}的其他基金
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
PFI-TT: A Smart Bipolar Surgical Device for Electrosurgery
PFI-TT:用于电外科的智能双极手术设备
- 批准号:
2329783 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318662 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
I-Corps: Smart window that helps to ensure a healthy indoor air quality
I-Corps:智能窗户有助于确保健康的室内空气质量
- 批准号:
2221915 - 财政年份:2022
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
NPIF DTP IAA ABC (2020): UBEL
NPIF DTP IAA ABC (2020):UBEL
- 批准号:
ES/V502339/1 - 财政年份:2020
- 资助金额:
$ 38.09万 - 项目类别:
Research Grant
Isolation and Identification of Heterogeneous Circulating Tumor Cells Using a Microchip with Hyperuniform Patterns
使用具有超均匀模式的微芯片分离和鉴定异质循环肿瘤细胞
- 批准号:
1935792 - 财政年份:2020
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
- 批准号:
1915995 - 财政年份:2019
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
I-Corps: On-line Monitoring of a Tissue Welding Process
I-Corps:组织焊接过程的在线监控
- 批准号:
1904256 - 财政年份:2018
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
Intellectual Migration Dynamics Between China and the U.S.
中美之间的智力移民动态
- 批准号:
1660526 - 财政年份:2017
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
語彙学習のための大規模 Data-Driven Learning システム開発
开发大规模数据驱动的词汇学习系统
- 批准号:
23K21732 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
- 批准号:
EP/Z000653/1 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Research Grant
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
- 批准号:
24K20781 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CPS: Small: NSF-DST: Safety-Aware Behaviour-Driven Reinforcement Learning Based Autonomous Driving Solution for Urban Areas
CPS:小型:NSF-DST:基于安全意识行为驱动的强化学习的城市自动驾驶解决方案
- 批准号:
2343167 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant