CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning

职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料

基本信息

项目摘要

The objective of this CAREER project is to engage and educate graduate and undergraduate students in materials design, with a particular focus on designing cellular mechanical metamaterials (CMMs) under the effects of fabrication-related material uncertainty. The plan includes physics-based computations, machine learning (ML), and design under uncertainty strategies, as well as the development of outreach activities. The underlying hypothesis is that the CMMs can be designed to achieve targeted mechanical properties and performance by developing a multi-scale computational framework that investigates the relationship between component-scale properties and underlying micro-scale architectures. The societal impacts of the project will be on the economy, with the promise of designing sustainable, lightweight, and high-performance materials. The gained knowledge will be disseminated to academia and industry through technical activities and open-access graphical software tools. Additional deliverables of the project include curriculum development at undergraduate and graduate levels, research experiences for students, and other outreach activities involving students and educators, with a special focus on individuals from underrepresented groups.The overarching goal of this project is to improve the current knowledge of CMM design and enhance the performance of 3-D printed products using a multi-scale framework that will explore complex and non-linear relationships between the microstructure and component by allowing non-periodically repeating microstructure designs and accounting for the fabrication-related uncertainty. This goal will be accomplished by developing a multi-scale design strategy driven by physics-based material models, data-driven and physics-informed ML, design optimization, and uncertainty quantification approaches. The ability to model non-periodical microstructure arrangements of CMMs will be essential to explore their true component-level mechanical performance, thereby substantially increasing their potential for use in new-generation engineering systems for hypersonics, structural applications, energy absorption, sensors, and soft robots. The findings of the project will also identify designs that improve mechanical performance and reliability by considering the effects of material uncertainty. In addition, the design methodology for CMMs will be extended to nature-inspired cellular materials, such as artificial bone structures, for designing such systems to achieve target mechanical performance under uncertainty. The activity will also promote teaching, training, and learning through the development of outreach activities, such as camps, programs, and workshops targeting both youths and teachers. The participation of underrepresented groups is guaranteed by specifically addressing outreach programs for female students, first-generation college students, students from underserved communities in Southwest Virginia, and other minorities. The project data and findings will be made publicly available at Virginia Tech’s open-access repository, VTechData.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个职业项目的目标是让研究生和本科生参与和教育材料设计,尤其是在与制造相关的材料不确定性的影响下设计细胞机械超材料(CMM)。该计划包括基于物理的计算、机器学习(ML)和不确定性下的设计战略,以及开展外联活动。其基本假设是,通过开发一个多尺度计算框架来研究组件尺度属性与底层微尺度体系结构之间的关系,坐标测量机可以被设计成达到目标的机械性能和性能。该项目将对经济产生社会影响,有望设计出可持续、轻质和高性能的材料。所获得的知识将通过技术活动和开放获取的图形软件工具传播给学术界和工业界。该项目的其他成果包括本科生和研究生水平的课程开发,学生的研究经验,以及涉及学生和教育工作者的其他外展活动,特别关注来自代表性不足的群体的个人。该项目的总体目标是改善当前的CMM设计知识,并使用多尺度框架提高3D打印产品的性能,该框架将通过允许非周期性重复的微结构设计和考虑与制造相关的不确定性来探索微观结构和组件之间的复杂和非线性关系。这一目标将通过开发多尺度设计战略来实现,该战略由基于物理的材料模型、数据驱动和物理信息的ML、设计优化和不确定性量化方法驱动。对坐标测量机的非周期性微结构排列进行建模的能力对于探索其真实的部件级机械性能至关重要,从而大大增加了其在高超声速、结构应用、能量吸收、传感器和软机器人等新一代工程系统中的使用潜力。该项目的发现还将确定通过考虑材料不确定性的影响来改进机械性能和可靠性的设计。此外,坐标测量机的设计方法将扩展到受自然启发的细胞材料,如人造骨结构,用于设计此类系统,以在不确定的情况下实现目标机械性能。该活动还将通过开展推广活动来促进教学、培训和学习,如针对青年和教师的夏令营、方案和讲习班。通过专门针对女学生、第一代大学生、来自西南部弗吉尼亚州服务不足社区的学生和其他少数族裔的外联计划,确保代表不足的群体的参与。项目数据和调查结果将在弗吉尼亚理工大学的开放获取库VTechData上公开提供。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pinar Acar其他文献

Quantification of Aleatoric and Epistemic Uncertainty of Microstructures using Experiments and Markov Random Fields
使用实验和马尔可夫随机场量化微观结构的任意和认知不确定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew T. Long;Arulmurugan Senthilnathan;Pinar Acar
  • 通讯作者:
    Pinar Acar
Sensitivity Assessment on Homogenized Stress–Strain Response of Ti-6Al-4V Alloy
Ti-6Al-4V 合金均匀应力-应变响应的敏感性评估
  • DOI:
    10.1007/s11837-023-06188-5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Mohamed Elleithy;Hengduo Zhao;Pinar Acar
  • 通讯作者:
    Pinar Acar
Design of polycrystalline metallic alloys under multi-scale uncertainty by connecting atomistic to meso-scale properties
通过连接原子与介观尺度特性来设计多尺度不确定性下的多晶金属合金
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    M. Billah;Pinar Acar
  • 通讯作者:
    Pinar Acar
Sensitivity Analysis and Uncertainty Quantification for Crystal Plasticity Parameters of Ti-6Al-4V Alloy
Ti-6Al-4V合金晶体塑性参数的敏感性分析和不确定度量化
  • DOI:
    10.2514/6.2024-1233
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohamed Elleithy;Pinar Acar
  • 通讯作者:
    Pinar Acar
A Deep Learning Framework for Time-Series Processing-Microstructure-Property Prediction
用于时间序列处理-微观结构-性能预测的深度学习框架

Pinar Acar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pinar Acar', 18)}}的其他基金

Collaborative Research: AI-Driven Multi-Scale Design of Materials under Processing Constraints
协作研究:人工智能驱动的加工约束下材料的多尺度设计
  • 批准号:
    2053840
  • 财政年份:
    2021
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

RII Track-4:NSF: Design of Bioresponsive Liquid Crystal Droplets for Sensing in Cellular Environments
RII Track-4:NSF:用于细胞环境传感的生物响应液晶液滴的设计
  • 批准号:
    2327449
  • 财政年份:
    2024
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Standard Grant
Functional design of amphiphilic artificial proteins working at heterologous cellular interfaces
在异源细胞界面上工作的两亲性人工蛋白的功能设计
  • 批准号:
    23H00247
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: SaTC: CORE: Medium: Safeguarding Next-Generation Emergency Services (NG-9-1-1) over Cellular Networks: From Design to Practice
协作研究:SaTC:核心:中:通过蜂窝网络保障下一代紧急服务 (NG-9-1-1):从设计到实践
  • 批准号:
    2246050
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Safeguarding Next-Generation Emergency Services (NG-9-1-1) over Cellular Networks: From Design to Practice
协作研究:SaTC:核心:中:通过蜂窝网络保障下一代紧急服务 (NG-9-1-1):从设计到实践
  • 批准号:
    2246051
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245299
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Standard Grant
Design, production planning and scheduling of Cellular Manufacturing Systems, considering dynamic and uncertain environments
考虑动态和不确定环境的细胞制造系统的设计、生产计划和调度
  • 批准号:
    2739688
  • 财政年份:
    2022
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Studentship
Experimental and computational design of self-organised patterning via collective information processing in cellular communities
通过细胞群落中集体信息处理进行自组织模式的实验和计算设计
  • 批准号:
    2722967
  • 财政年份:
    2022
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Studentship
Excellence in Research: Artificial Intelligence Aided Metasurface Design and Application in Next Generation of Cellular Communication Systems
卓越研究:人工智能辅助超表面设计及其在下一代蜂窝通信系统中的应用
  • 批准号:
    2200640
  • 财政年份:
    2022
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Standard Grant
Design And Validation Of 3D Printed Aperiodic Cellular Structures
3D 打印非周期蜂窝结构的设计和验证
  • 批准号:
    2606814
  • 财政年份:
    2021
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了